PGA (phosphoglyceric acid) is converted to PGAL (phosphoglyceraldehyde) through a series of enzymatic reactions during the Calvin cycle of photosynthesis. This conversion involves the reduction of PGA to PGAL using ATP and NADPH as energy sources. PGAL is then used to produce glucose and other carbohydrates in the plant cell.
During the Calvin cycle, one molecule of 3-phosphoglycerate (3-PGA) is produced for every carbon dioxide molecule fixed. Thus, the number of 3-PGA molecules present during the Calvin cycle depends on the number of carbon dioxide molecules fixed in the process.
PGAL (phosphoglyceraldehyde) appears in the Calvin cycle of photosynthesis, where it is produced from the reduction of 3-phosphoglycerate. It is not directly involved in cellular respiration, but its further conversion to glucose and other carbohydrates in plants provides the energy source for respiration in both plants and animals.
PGAL, or phosphoglyceraldehyde, is a three-carbon sugar molecule produced during the Calvin cycle of photosynthesis. It is formed after the fixation of carbon dioxide and the subsequent reduction of 3-phosphoglycerate (3-PGA) using ATP and NADPH. PGAL serves as a crucial intermediate that can be used to regenerate ribulose bisphosphate (RuBP) and is also a building block for glucose and other carbohydrates, ultimately contributing to the plant's energy storage and growth.
The molecule used to replenish RuBP in the Calvin Cycle is phosphoglycerate (PGA). PGA is converted to RuBP through a series of enzymatic reactions, allowing the cycle to continue and fix more carbon dioxide.
One molecule of PGAL has 3 carbons in it (therefore three turns are necessary). Six molecules would therefore require 18 turns of the Calvin Cycle.
The source of energy for converting PGA (3-phosphoglycerate) into PGAL (glyceraldehyde-3-phosphate) is ATP (adenosine triphosphate). In the process of photosynthesis, ATP is utilized in the Calvin cycle to drive the conversion of PGA into PGAL. This conversion is catalyzed by the enzyme phosphoglycerate kinase while consuming ATP.
PGAL (more commonly G3P) is what is created from PGA through the first steps of the Calvin Cycle of photosynthesis. A phosphate is added to PGA by ATP and a proton is added to PGA by NADPH. Then the phosphate is released and the resulting molecule is PGAL.
The source of energy for converting PGA (3-phosphoglycerate) into PGAL (3-phosphoglyceraldehyde) during the light-independent reactions of photosynthesis is ATP (adenosine triphosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate) generated during the light-dependent reactions. These high-energy molecules provide the necessary energy and reducing power to drive the conversion of PGA to PGAL.
substrate level phosphorylation
PGA,PGAL,Pyruvate
Pgal is synthesized during the calvin cycle
The 3 carbon molecule created from pGAL in glycolysis which is also produced in the Calvin cyclein photosynthesis.
During the Calvin cycle, one molecule of 3-phosphoglycerate (3-PGA) is produced for every carbon dioxide molecule fixed. Thus, the number of 3-PGA molecules present during the Calvin cycle depends on the number of carbon dioxide molecules fixed in the process.
PGAL stands for PhosphoGlycerALdehyde , which is a compound produced in GLYCOLYSIS during aerobic respiration. It eventually forms 2 molecules of phosphoglyceric acid (PGA). Hydrogen atoms lost here are transferred to NAD (nicotinamide adenine dinucleotide) to form reduced NAD ie, NAD.H2. Later on, the PGA is transformed to pyruvic acid (2 molecules), generating 4 molecules of ATP in the bargain. Hope this helped!
The conversion of PGAL to pyruvate is accompanied by the production of ATP molecules and the transfer of high-energy electrons to the electron carriers NAD+ and FADH2. This process occurs during glycolysis, a series of enzymatic reactions that breaks down glucose to produce energy for the cell.
PGAL (phosphoglyceraldehyde) appears in the Calvin cycle of photosynthesis, where it is produced from the reduction of 3-phosphoglycerate. It is not directly involved in cellular respiration, but its further conversion to glucose and other carbohydrates in plants provides the energy source for respiration in both plants and animals.
ATP, NADPH, and hydrogen ions are used in the Calvin cycle to convert PGA (3-phosphoglycerate) into G3P (glyceraldehyde-3-phosphate), which is a precursor molecule used to eventually produce glucose and other carbohydrates.