Reaction catalyzed by enzyme B > reaction catalyzed by enzyme A > uncatalyzed reaction. Enzymes speed up reactions by lowering the activation energy required for the reaction to occur, making them faster than uncatalyzed reactions. The specificity and efficiency of enzyme-substrate interactions determine the rate of reaction catalyzed by different enzymes.
Enzyme concentration has no effect on the rate of an enzyme-catalyzed reaction after reaching a saturation point where all enzyme active sites are occupied. At this point, adding more enzyme will not increase the reaction rate further.
The rate of an enzyme-catalyzed reaction is often referred to as the enzyme's catalytic activity or turnover rate. It is a measure of how quickly the enzyme can convert substrate molecules into products.
No, after the product of an enzyme-catalyzed reaction leaves the active site, the enzyme can still react with more substrate to continue catalyzing the reaction. The enzyme is not altered or used up in the reaction, so it can continue to bind to and catalyze additional substrate molecules.
Reactants. "Substrate" is another possibility.
Reaction catalyzed by enzyme B > reaction catalyzed by enzyme A > uncatalyzed reaction. Enzymes speed up reactions by lowering the activation energy required for the reaction to occur, making them faster than uncatalyzed reactions. The specificity and efficiency of enzyme-substrate interactions determine the rate of reaction catalyzed by different enzymes.
The enzyme graph shows that the reaction rate of the catalyzed reaction is faster compared to the uncatalyzed reaction. This indicates that the enzyme is effectively speeding up the reaction process.
The rate-limiting step of an enzyme-catalyzed reaction is the slowest step in the reaction that determines the overall rate at which the reaction proceeds.
Generally in an enzyme-catalyzed reaction, the reactant is called the substrate, which in association with the enzyme forms the product.
Polysaccharide
catalyzed reaction
Enzyme concentration has no effect on the rate of an enzyme-catalyzed reaction after reaching a saturation point where all enzyme active sites are occupied. At this point, adding more enzyme will not increase the reaction rate further.
The rate of an enzyme-catalyzed reaction is often referred to as the enzyme's catalytic activity or turnover rate. It is a measure of how quickly the enzyme can convert substrate molecules into products.
reactions in which enzymes are involved as catalysts.
The compound produced by the transfer of the acetyl group of acetyl CoA to oxaloacetate is citrate, which is the first step in the citric acid cycle (Krebs cycle). This reaction is catalyzed by the enzyme citrate synthase.
ur face
They are generally known as substrates.