It shows how galaxies are moving in relation to Earth.
Actually, it wasn't the Doppler-effect that lead to the Big Bang theory, but the red-shift of remote galaxies. Although it was initially thought that this red-shift might be caused by a Doppler-effect, it is now understood that this red-shift is caused by the metric expansion of space itself.
It doesn't. The Doppler shift can tell you how fast something is moving towards us or away from us; not how far it is. Only in the case of distant galaxies can this be used to estimate the galaxy's distance, because of the expansion of the Universe (galaxies that move away from us faster are generally farther away).
The spectral lines from distant galaxies do not match those on Earth because of the Doppler effect, cosmic expansion, and differences in elements present in the galaxies. These factors cause the observed spectral lines to be shifted or altered compared to what we see on Earth.
One of the best indications that the universe is expanding is the redshift of light from distant galaxies, which shows that they are moving away from us. Another indication is the cosmic microwave background radiation, which is consistent with an expanding universe. Additionally, observations of the distribution of galaxies and the large-scale structure of the universe support the idea of expansion.
When galaxies experience blue shift, they are moving closer to us. This phenomenon occurs when the light emitted by the galaxy is compressed into shorter wavelengths, shifting it toward the blue end of the spectrum. Blue shift is typically observed in galaxies that are part of a gravitational interaction or are falling into a larger galaxy. In contrast, galaxies moving away from us experience red shift, where the light is stretched into longer wavelengths.
That is called a red shift or a Doppler shift.
The Red Shift or Doppler effect
Most galaxies exhibit a redshift, meaning that they move away from us.
Doppler shift shows that galaxies are moving away from each other at rates that depend on how far apart they are. According to the Big Bang Theory, the universe began with an enormous explosion. Then, the entire universe began to expand everywhere at the same time.The doppler shift shows that galaxies are moving away from each other at rates that depend on how far apart they are.
The universe is expanding.
NoRed shift is the Doppler effect as it applies to the light from receding galaxies and stars.As the name suggests, "irregular" galaxies have no specific form, and so the group contains a very diverse selection of objects.
The most plausible explanation for the redshift is that galaxies are moving away from us. This is similar to the Doppler effect, but it is normally believed that space itself is expanding, so the situation is a bit different from the "normal" Doppler effect.
Christian Doppler, an Austrian physicist, is credited with discovering the phenomenon of the Doppler red shift in 1842. He observed that the pitch of sound waves from a moving object changes depending on the object's motion relative to the observer. His theory was later extended to light waves to explain the red shift observed in the spectra of distant galaxies.
Some nearby galaxies move towards us (blueshift), some move away from us (redshift). Galaxies that are farther away all move away from us (redshift); this means that the Universe is expanding.
Actually, it wasn't the Doppler-effect that lead to the Big Bang theory, but the red-shift of remote galaxies. Although it was initially thought that this red-shift might be caused by a Doppler-effect, it is now understood that this red-shift is caused by the metric expansion of space itself.
It doesn't. The Doppler shift can tell you how fast something is moving towards us or away from us; not how far it is. Only in the case of distant galaxies can this be used to estimate the galaxy's distance, because of the expansion of the Universe (galaxies that move away from us faster are generally farther away).
Doppler shift is the change in frequency of a wave that seems to occur as it moves. Scientists study the doppler shift to see whether stars are moving away from or toward our galaxy.