The same as for a helium nucleus: 4. Two protons and two neutrons.
process by which a target nucleus can be split into two smaller nuclei upon bombardment
alpha
alpha beta gamma
Usually with the '4 types of radiation' it is referred to:- alpha radiation (emission of an alpha particle = a helium nucleus = 2 neutrons + 2 protons):Hence for the emitting nucleus the mass number decreases by 4 and the atomic number by 2.- beta-minus radiation (emission of a beta- particle = an electron)Hence for the emitting nucleus the mass number remains the same and the atomic number increases by 1 (a neutron decays into a proton and beta- radiation)- beta-plus radiation (emission of a beta+ particle = a positron)Hence for the emitting nucleus the mass number remains the same and the atomic number decreases by 1 (under the addition of energy a proton decays into a neutron and a positron)- gamma radiation (emission of high energetic photons)The emitting nucleus doesn't change its mass number and atomic number,but it jumps from a higher energy level to a lower energy level.
It depends on what caused the gamma event in the first place.Strictly speaking, gamma radiation is caused by the de-excitation of the nucleus, so the atomic number (and Atomic Mass) does not change during a gamma event.However, the gamma event is usually precipitated by some other event, such as a beta or alpha decay that does change the configuration of the nucleus. An alpha event reduces the atomic number by 2 (and reduces the atomic mass by 4), while the beta event increases the atomic number by 1 (and does not change the atomic mass very much).Its actually more complex than that, but the answer to the original question is that nothing really happens to the atomic number during a gamma event.
process by which a target nucleus can be split into two smaller nuclei upon bombardment
Alpha particles are a type of nuclear radiation with a mass of 4 atomic mass units. They consist of two protons and two neutrons bound together.
alpha
alpha - 2 neutrons and 2 protons released or neutron collision with a fissionable nucleus resulting in the fissioning of the atom into two fission fragments and more neutrons creating two atoms each a little less than half the atomic mass of the original atom
alpha beta gamma
The mass of an alpha particle is approximately 4 amu (atomic mass units).
Usually with the '4 types of radiation' it is referred to:- alpha radiation (emission of an alpha particle = a helium nucleus = 2 neutrons + 2 protons):Hence for the emitting nucleus the mass number decreases by 4 and the atomic number by 2.- beta-minus radiation (emission of a beta- particle = an electron)Hence for the emitting nucleus the mass number remains the same and the atomic number increases by 1 (a neutron decays into a proton and beta- radiation)- beta-plus radiation (emission of a beta+ particle = a positron)Hence for the emitting nucleus the mass number remains the same and the atomic number decreases by 1 (under the addition of energy a proton decays into a neutron and a positron)- gamma radiation (emission of high energetic photons)The emitting nucleus doesn't change its mass number and atomic number,but it jumps from a higher energy level to a lower energy level.
The mass of an alpha particle is 4 atomic mass units, 2 protons and 2 neutrons, or about 6.644656 x 10-27 kg.
It depends on what caused the gamma event in the first place.Strictly speaking, gamma radiation is caused by the de-excitation of the nucleus, so the atomic number (and Atomic Mass) does not change during a gamma event.However, the gamma event is usually precipitated by some other event, such as a beta or alpha decay that does change the configuration of the nucleus. An alpha event reduces the atomic number by 2 (and reduces the atomic mass by 4), while the beta event increases the atomic number by 1 (and does not change the atomic mass very much).Its actually more complex than that, but the answer to the original question is that nothing really happens to the atomic number during a gamma event.
an alpha particle
An alpha particle is a helium-4 nucleus. It has a mass of about 4 atomic mass units.
A gamma ray is released from atomic nuclei under certain conditions, and the generation of a gamma ray photon alonewill not change the mass of an atomic nucleus. The gamma ray is a form of electromagnetic energy. Other forms of radiation released from nuclei are particulate, and the particles released take mass from the nucleus with them when they go. Beta radiation takes a little, and alpha radiation takes a lot more.