The four DNA bases are Adenine, Guanine, Cytosine and Thymine. In RNA there are also Adenine, Guanine & Cytosine but instead of Thymine there is Urasil. But the 3 common ones are not completely similar for example Adenine in DNA differs from Adenine in RNA.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
In the base pairing between mRNA and DNA, the mRNA base adenine (A) pairs with the DNA base thymine (T). Conversely, uracil (U) in mRNA pairs with adenine (A) in DNA, as uracil replaces thymine in RNA. Cytosine (C) pairs with guanine (G) in both DNA and mRNA, and guanine (G) pairs with cytosine (C).
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
The DNA sequence that would pair with the DNA segment TTACGC is AATGCG. The mRNA sequence that would pair with the DNA segment TTACGC is AAUGCG.
The mRNA sequence generated from the DNA strand tgacgca would be acugcgu. This is because mRNA is complementary to the DNA template strand, so DNA base T pairs with mRNA base A, DNA base G pairs with mRNA base C, DNA base A pairs with mRNA base U, and DNA base C pairs with mRNA base G.
Uracil replaces Thymine as a base in mRNA.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
In the base pairing between mRNA and DNA, the mRNA base adenine (A) pairs with the DNA base thymine (T). Conversely, uracil (U) in mRNA pairs with adenine (A) in DNA, as uracil replaces thymine in RNA. Cytosine (C) pairs with guanine (G) in both DNA and mRNA, and guanine (G) pairs with cytosine (C).
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
The DNA sequence that would pair with the DNA segment TTACGC is AATGCG. The mRNA sequence that would pair with the DNA segment TTACGC is AAUGCG.
During transcription, the resulting bases on the mRNA if the DNA has the base adenine is Proteins.
mRNA forms a complementary sequence to the DNA it is transcribed from. Therefore, the DNA strand would be the complement (opposite base pair) from what is present in the mRNA. Also, remember that RNA uses uracil (U) in place of thymine (T). For the mRNA strand CUC-AAG-UGC-UUC, the complementary DNA strand would be GAG-TTC-ACG-AAG.
The DNA segment complementary to the mRNA sequence "UGAUUC" would be "ACTAAG". This is because in DNA, adenine pairs with thymine and cytosine pairs with guanine. Thus, the complementary DNA sequence of the mRNA sequence is determined by replacing each base with its complementary base.
In the synthesis of mRNA, an adenine in the DNA pairs with uracil. This is known as A-U base pairing, which replaces the A-T base pairing found in DNA replication.
The molecular weight of a DNA base pair is approximately 650 daltons.