In the base pairing between mRNA and DNA, the mRNA base adenine (A) pairs with the DNA base thymine (T). Conversely, uracil (U) in mRNA pairs with adenine (A) in DNA, as uracil replaces thymine in RNA. Cytosine (C) pairs with guanine (G) in both DNA and mRNA, and guanine (G) pairs with cytosine (C).
In the synthesis of mRNA, an adenine in the DNA pairs with uracil. This is known as A-U base pairing, which replaces the A-T base pairing found in DNA replication.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
Messenger RNA (mRNA) always pairs with specific complementary bases on transfer RNA (tRNA). For example, adenine (A) on mRNA pairs with uracil (U) on tRNA, cytosine (C) on mRNA pairs with guanine (G) on tRNA, and so on. This base pairing is crucial for protein synthesis during translation.
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
To determine the mRNA transcript for the DNA sequence TTACGC, you need to replace each DNA base with its complementary RNA base: adenine (A) pairs with uracil (U), thymine (T) pairs with adenine (A), cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, the mRNA transcript for the DNA sequence TTACGC would be AAUGC.
The mRNA sequence generated from the DNA strand tgacgca would be acugcgu. This is because mRNA is complementary to the DNA template strand, so DNA base T pairs with mRNA base A, DNA base G pairs with mRNA base C, DNA base A pairs with mRNA base U, and DNA base C pairs with mRNA base G.
In the synthesis of mRNA, an adenine in the DNA pairs with uracil. This is known as A-U base pairing, which replaces the A-T base pairing found in DNA replication.
The mRNA sequence transcribed from the given DNA sequence is AGC CUG GUA GCU. The DNA base T pairs with A in mRNA, C pairs with G, G pairs with C, and A pairs with U.
CGT base triplet on DNA is copied into mRNA as GCA. This is because DNA and RNA follow complementary base pairing rules, where C in DNA pairs with G in RNA, G in DNA pairs with C in RNA, and T in DNA pairs with A in RNA.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
Messenger RNA (mRNA) always pairs with specific complementary bases on transfer RNA (tRNA). For example, adenine (A) on mRNA pairs with uracil (U) on tRNA, cytosine (C) on mRNA pairs with guanine (G) on tRNA, and so on. This base pairing is crucial for protein synthesis during translation.
The DNA segment complementary to the mRNA sequence "UGAUUC" would be "ACTAAG". This is because in DNA, adenine pairs with thymine and cytosine pairs with guanine. Thus, the complementary DNA sequence of the mRNA sequence is determined by replacing each base with its complementary base.
In DNA, adenine pairs with thymine, and cytosine pairs with guanine. When DNA is transcribed into mRNA, adenine in DNA pairs with uracil in mRNA, and cytosine in DNA pairs with guanine in mRNA. This complementary base pairing ensures accurate transfer of genetic information during transcription.
During protein synthesis, DNA serves as a template for mRNA to be transcribed. The mRNA base pairs with the complementary DNA strand, forming a sequence that codes for specific amino acids. This mRNA sequence is then translated by ribosomes to assemble the corresponding protein.
To determine the mRNA transcript for the DNA sequence TTACGC, you need to replace each DNA base with its complementary RNA base: adenine (A) pairs with uracil (U), thymine (T) pairs with adenine (A), cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, the mRNA transcript for the DNA sequence TTACGC would be AAUGC.
To find the mRNA base sequence, you first need to identify the corresponding DNA template strand. The mRNA is synthesized by RNA polymerase during transcription, where it complements the DNA template. In this process, adenine (A) in DNA pairs with uracil (U) in mRNA, while thymine (T) pairs with adenine (A), cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). The resulting mRNA sequence is a copy of the coding DNA strand, substituting uracil for thymine.
The complementary base pairing rule for DNA and mRNA is: A pairs with U, T pairs with A, G pairs with C, and C pairs with G. Therefore, the mRNA complementary strand for the DNA sequence TTAAGGCC would be AAUUCCGG.