2 mol/kg
The molarity of the sugar solution can be calculated using the formula: molarity = moles of solute / liters of solution. Plugging in the values, molarity = 21.0 moles / 52.0 L which equals 0.404 Molarity.
Need mole KCl first. 4.88 grams KCl (1 mole KCl/74.55 grams) = 0.06546 moles KCl =======================now, Molarity = moles of solute/Liters of solution ( 423 ml = 0.423 Liters ) Molarity = 0.06546 moles KCl/0.423 Liters = 0.155 M KCl ------------------
Molarity (M) is defined as moles of solute/liters of solution. Assuming the final volume is 500 ml (0.5 liters), then M = 1.2 moles/0.5 liters = 2.4 M
To find the molarity, we need to first calculate the number of moles of glycerol using its density at 15°C, which is 1.260 g/mL. Then, convert the mass of glycerol to moles using its molar mass of about 92.09 g/mol. Finally, divide the moles by the total volume of the solution in liters (200.00 mL = 0.200 L) to get the molarity.
To find the molarity, we first need to convert the mass of water to moles. Since 1 kg of water is approximately 1000 moles, 3 kg of water is 3000 moles. Then, molarity is calculated by dividing the number of moles of solute (NaOH) by the volume of solution in liters. So, the molarity would be 6 moles / 3 L = 2 M.
what is the molarity of a solution prepared by dissolving 36.0g of NaOH in enough water to make 1.50 liter of solution?
Molarity means moles per litre. Therefore, you have to get it as a term in a litre. 4 litres /4 is a litre, therefore 4 moles/4 is 1 mole. So it is 1 molar.
The molarity of the solution would be approximately 0.2 M. This is calculated by first converting the mass of water to volume (10 kg is roughly equivalent to 10 L), then using the formula Molarity = moles of solute / volume of solution in liters.
To find the molarity, first calculate the number of moles of sodium sulphate using its molar mass. Sodium sulphate's molar mass is 142.04 g/mol. Next, divide the number of moles by the volume in liters (125 ml = 0.125 L) to get the molarity. This will give you the molarity of the sodium sulphate solution.
The molarity of the solution is 0.5 M.
The molarity of the sugar solution can be calculated using the formula: molarity = moles of solute / liters of solution. Plugging in the values, molarity = 21.0 moles / 52.0 L which equals 0.404 Molarity.
Need mole KCl first. 4.88 grams KCl (1 mole KCl/74.55 grams) = 0.06546 moles KCl =======================now, Molarity = moles of solute/Liters of solution ( 423 ml = 0.423 Liters ) Molarity = 0.06546 moles KCl/0.423 Liters = 0.155 M KCl ------------------
6 kg = 6000 grams and density of water = 1.00 grams/milliliters. 1.00 g/ml = 6000 grams/X ml = 6000 ml which = 6 liters ======================== Molarity = moles of solute/Liters of solution Molarity = 2 moles NaOH/6 Liters = 0.3 M NaOH solution -----------------------------
concentration or molarity = number of moles/volume number of moles (n) = mass in grams of nacl/relative atomic mass of nacl n=17.52/(23+35.5) n = 0.2994872 mol volume = 2000/1000 = 2dm^3 molarity = 0.2994872/2 =0.15mol/dm^3
First, calculate the molar mass of LiClO4 3H2O. Then, convert 22.4 g to moles using the molar mass. Next, determine the molarity by dividing the moles of LiClO4 3H2O by the volume of solution in liters (225 mL = 0.225 L).
Need moles MgCl2 75.0 grams MgCl2 (1 mole MgCl2/95.21 grams) = 0.7877 mole MgCl2 ================now, Molarity = moles of solute/Liters of solution ( 500.0 milliliters = 0.5 Liters ) Molarity = 0.7877 moles MgCl2/0.5 Liters = 1.58 M MgCl2 solution --------------------------------
To find the molarity, we first need to convert the mass of water to volume using the density of water. Given the density of water is approximately 1000 g/L, 6 kg of water is equivalent to 6000 g or 6 L. Next, calculate the molarity using the formula Molarity (M) = moles of solute / liters of solution. In this case, 2 moles of NaOH in 6 L of water gives a molarity of 0.33 M.