Mintaka in the Belt of Orion
A star at the celestial equator will move 15 degrees in altitude per hour, and 15 arcseconds in 1 second of time. This is because the celestial equator intersects the celestial sphere at 90 degrees from the north and south celestial poles, so the stars appear to move in circles around the celestial poles.
Yes. "Declination" on the celestial coordinate system is the counterpart of "latitude" on the terrestrial coordinate system. Positive and negative declination correspond respectively to north and south latitude.
Celestial Equator
No, the celestial equator does not always pass directly overhead. The position of the celestial equator in the sky is determined by the observer's latitude on Earth. If the observer is located at the equator, the celestial equator will pass directly overhead. However, for observers at different latitudes, the celestial equator will appear at an angle to the horizon.
moves from east-to-west relative to the horizon
Yes. The North Star is aligned with the celestial north pole.
A declination of +30 degrees. This means it is 30 degrees north of the celestial equator.
A star at the celestial equator will move 15 degrees in altitude per hour, and 15 arcseconds in 1 second of time. This is because the celestial equator intersects the celestial sphere at 90 degrees from the north and south celestial poles, so the stars appear to move in circles around the celestial poles.
Celestial coordinates. -- The star's latitude on the celestial sphere is the same as the Earth latitude that it seems to follow on its way aroujnd the sky. On the celestial sphere, the latitude is called "declination", and is expressed in degrees. -- The star's longitude on the celestial sphere is its angle, measured westward, from the point in the sky called the Vernal Equinox ... the point where the sun appears to cross the celestial equator in March. On the celestial sphere, the star's longitude is called "Right Ascension", and it's expressed in hours. That certainly seems confusing, but an "hour of Right Ascension" just means 15 degrees of celestial longitude. So, as the sky turns, the point directly over your head moves through the stars by 1 hour of Right Ascension every hour.
A declination is a term used in astronomy to describe the angular distance of a celestial object from the celestial equator. For example, the declination of the star Sirius is approximately -16.7 degrees, indicating its position relative to the celestial equator.
celestial equator
Yes. "Declination" on the celestial coordinate system is the counterpart of "latitude" on the terrestrial coordinate system. Positive and negative declination correspond respectively to north and south latitude.
Celestial Equator
No, the celestial equator does not always pass directly overhead. The position of the celestial equator in the sky is determined by the observer's latitude on Earth. If the observer is located at the equator, the celestial equator will pass directly overhead. However, for observers at different latitudes, the celestial equator will appear at an angle to the horizon.
To determine the declination of a star, one can use a tool called a star chart or a star atlas. By locating the star in the night sky and referencing its position relative to the celestial equator, one can measure the angle of the star's position above or below the equator to find its declination.
The celestial equator passes through 15 major constellations, including 5 from the Zodiac:AquilaAquariusCanus MinorCetusEridanusHydraLeoMonocerosOrionOphiuchusPiscesSerpansSextansTaurusVirgo
moves from east-to-west relative to the horizon