The opposite strand in DNA will have bases that pair with the original strand according to the base pairing rules: adenine with thymine and cytosine with guanine. So, if the original sequence is ATCG, the opposite strand will be TAGC.
Each strand in the double helix is complementary rather than identical to the opposite strand. The bases in one strand pair up with specific bases in the opposite strand according to the base pairing rule (A with T and C with G). This complementary base pairing allows each strand to serve as a template for the synthesis of a new strand during DNA replication.
The DNA strand that has the same bases as "AGTAAC" would be its complementary strand, which is "TCATTG." In DNA, adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), so each base on one strand is matched by its complementary base on the opposite strand.
To determine the sequence of the template strand, you need to find the complementary bases to the nontemplate strand (5' ATGGGCGC 3'). The complementary bases are A-T and G-C. Therefore, the sequence of the template strand will be 3' TACCCGCG 5', written in the opposite direction to maintain the 5' to 3' orientation.
To determine the order of nitrogen bases in the matching lagging strand, you first need to know the sequence of the leading strand. The lagging strand is synthesized in short segments (Okazaki fragments) and runs in the opposite direction of the leading strand. If, for example, the leading strand has the sequence A-T-C-G-A, the corresponding order of nitrogen bases in the lagging strand would be T-A-G-C-T, as adenine pairs with thymine and cytosine pairs with guanine.
No each strand is complementary to the other, not identical. Opposite strands will run in the opposite direction with nucleotides that complement the other strand Ex. 5actgactgactg3 & 3tgactgactgac5
Each strand in the double helix is complementary rather than identical to the opposite strand. The bases in one strand pair up with specific bases in the opposite strand according to the base pairing rule (A with T and C with G). This complementary base pairing allows each strand to serve as a template for the synthesis of a new strand during DNA replication.
The DNA strand that has the same bases as "AGTAAC" would be its complementary strand, which is "TCATTG." In DNA, adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), so each base on one strand is matched by its complementary base on the opposite strand.
To determine the sequence of the template strand, you need to find the complementary bases to the nontemplate strand (5' ATGGGCGC 3'). The complementary bases are A-T and G-C. Therefore, the sequence of the template strand will be 3' TACCCGCG 5', written in the opposite direction to maintain the 5' to 3' orientation.
To determine the order of nitrogen bases in the matching lagging strand, you first need to know the sequence of the leading strand. The lagging strand is synthesized in short segments (Okazaki fragments) and runs in the opposite direction of the leading strand. If, for example, the leading strand has the sequence A-T-C-G-A, the corresponding order of nitrogen bases in the lagging strand would be T-A-G-C-T, as adenine pairs with thymine and cytosine pairs with guanine.
The complementary strand for bases AAGCCA would be TTCGGT. In DNA, adenine pairs with thymine and guanine pairs with cytosine.
The backbone of a polynucleotide strand is composed of alternating sugar (deoxyribose or ribose) and phosphate molecules. The sugar-phosphate backbone provides the structural support for the nucleotide bases, which extend from the backbone and form interactions with bases on the opposite strand in DNA or RNA molecules.
assuming that 5' CTGA 3': 3' GACT 5'
No each strand is complementary to the other, not identical. Opposite strands will run in the opposite direction with nucleotides that complement the other strand Ex. 5actgactgactg3 & 3tgactgactgac5
Watson and Crick established that A (adenine) is always found opposite T (Thymine), and G (Guanine) is always opposite C (cytosine). A-T, G-C. Therefore, reading from left to right, the complementary strand would be T C A G.
The new strand is complementary to the original strand. This means that the bases on the new strand pair with the bases on the original strand according to the rules of base pairing (A with T and G with C).
A TG CAGATTCTCTAAG
The corresponding mRNA strand would be AUCG.