-1.95
-1.95
-1.95V
silver reduced , gold oxidized
Silver (Ag) reduced, gold (Au) oxidized
The total reduction potential of a cell can be calculated by subtracting the standard reduction potential of the oxidation half-reaction from that of the reduction half-reaction. For potassium (K) being reduced, the standard reduction potential is approximately -2.93 V, while for copper (Cu) being oxidized, its reduction potential is +0.34 V. Thus, the total reduction potential of the cell is calculated as: E_cell = E_reduction (Cu) - E_reduction (K) = 0.34 V - (-2.93 V) = 3.27 V. This positive value indicates that the cell reaction is spontaneous.
-1.95
-1.95
-1.95V
-1.95V
The reduction potential of Na is -2.71 V and the reduction potential of Zn is -0.76 V. When Na is reduced, it gains electrons, so its reduction potential is written as a positive value (+2.71 V). When Zn is oxidized, it loses electrons, so its oxidation potential is -0.76 V. Therefore, the total reduction potential of the cell is +2.71 V - (-0.76 V) = +3.47 V.
silver reduced , gold oxidized
Any pair of half-reactions where the reduction potential of the half-reaction being oxidized is greater than the reduction potential of the half-reaction being reduced will have a negative total reduction potential. This results in a thermodynamically unfavorable reaction.
Silver (Ag) reduced, gold (Au) oxidized
-3.27V
The total reduction potential of a cell where potassium is reduced and copper is oxidized can be calculated by finding the difference in the standard reduction potentials of the two half-reactions. The reduction potential for potassium reduction (K⁺ + e⁻ → K) is -2.92 V, and the oxidation potential for copper oxidation (Cu → Cu²⁺ + 2e⁻) is 0.34 V. Therefore, the total reduction potential of the cell is -2.92 V - 0.34 V = -3.26 V.
The total reduction potential of a cell can be calculated by subtracting the standard reduction potential of the oxidation half-reaction from that of the reduction half-reaction. For potassium (K) being reduced, the standard reduction potential is approximately -2.93 V, while for copper (Cu) being oxidized, its reduction potential is +0.34 V. Thus, the total reduction potential of the cell is calculated as: E_cell = E_reduction (Cu) - E_reduction (K) = 0.34 V - (-2.93 V) = 3.27 V. This positive value indicates that the cell reaction is spontaneous.
The total reduction potential of the cell can be calculated by finding the difference between the reduction potentials of the two half-reactions at standard conditions. The reduction potential for K reduction is -2.92 V and for Cu oxidation is 0.34 V. So, the total reduction potential for the cell would be (-2.92 V) - 0.34 V = -3.26 V.