Bohr.
The difference in energy between the energy levels determines color of light emitted when an electron moves from one energy level to another.
Niels Bohr used Planck's idea of quantization to propose his model of the atom, which successfully explained the line spectrum of hydrogen. Bohr suggested that electrons orbit the nucleus in quantized energy levels, emitting or absorbing photons of specific energies when transitioning between these levels, which correspond to the observed spectral lines.
The mathematical equation that allows one to calculate the wavelengths of each line in the hydrogen emission spectrum was discovered by Danish physicist Niels Bohr in 1913 as part of his model of the hydrogen atom. This equation is known as the Balmer equation and helped to explain the spectral lines observed in hydrogen emission spectra.
Bohr is credited with developing the Bohr model of the atom, which incorporated the idea of quantized energy levels for electrons. This model helped explain the spectrum of hydrogen and laid the foundation for understanding atomic structure.
Niels Bohr is credited with developing the planetary model of the atom, which depicts electrons orbiting the nucleus in discrete energy levels. This model helped explain the stability of atoms and the emission of light at specific wavelengths.
he failed to explain line spectrum of elements except hydrogen.
The Bohr model of the atom helped to explain the quantization of electron energy levels, the stability of atoms, and the line spectrum observed in hydrogen. It proposed that electrons orbit the nucleus at specific energy levels, or shells, rather than in continuous orbits.
the line spectrum of the hydrogen spectrum indicates that only certain energies are allowed for the electron of the hydrogen atom. In other words, the energy of the electron in the hydrogen atom is quantized.
In the context of the hydrogen atom, degeneracy refers to the phenomenon where different electron states have the same energy level. This is significant because it helps explain the spectral lines observed in the hydrogen spectrum, providing insights into the behavior of electrons in atoms.
Kepler
The difference in energy between the energy levels determines color of light emitted when an electron moves from one energy level to another.
You can explain spectrum to children by telling them that it is like a scale or a range. For example, colors can be arranged on a spectrum from red to violet. You can also use examples like musical notes on a spectrum from low to high pitch.
Niels Bohr developed an empirical equation, known as the Balmer formula, which calculates the wavelengths of lines in the spectrum of hydrogen atoms. This equation helped explain the discrete energy levels of electrons within an atom, leading to the development of the Bohr model of the atom.
Bohr's model of the atom doesn't explain hydrogen's flammability.
Niels Bohr used Planck's idea of quantization to propose his model of the atom, which successfully explained the line spectrum of hydrogen. Bohr suggested that electrons orbit the nucleus in quantized energy levels, emitting or absorbing photons of specific energies when transitioning between these levels, which correspond to the observed spectral lines.
scientist tell you that so they can inform you on things
A scientist would not use a graph to explain the methodology.