van der Vaals forces of attraction and dipole-dipole interaction
Dispersion forces, also known as London dispersion forces, are present in all molecules and atoms. These forces are the weakest type of intermolecular interaction and arise from temporary fluctuations in electron distribution within a molecule or atom.
ionic
London dispersion forces (instantaneous induced dipole-dipole interactions.)
Intermolecular forces are of the type(1) hydrogen bonds (2) dipole-dipole attractions (3) dispersion forces (van der Waals, etc.)
London forces are present in chlorine molecules.
van der Vaals forces of attraction and dipole-dipole interaction
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
AlH3 alane is a covalent solid and is a giant molecule, so no intermolecular forces will be present. Planar AlH3 molecules have been isolated at very low temperatures. AlH3 molecules would be predicted to have no dipole moment due to their shape. The only intermolecular forces would be London dispersion forces.
Intramolecular forces are not intermolecular forces !
Dispersion forces, also known as London dispersion forces, are present in all molecules and atoms. These forces are the weakest type of intermolecular interaction and arise from temporary fluctuations in electron distribution within a molecule or atom.
The intermolecular forces present in CH3CH2OCH2CH3 are London dispersion forces, dipole-dipole interactions, and possibly hydrogen bonding between the oxygen atom and hydrogen atoms in neighboring molecules.
In nail polish remover, the main type of intermolecular forces present are London dispersion forces. These forces are a result of temporary dipoles formed by the movement of electrons within molecules. Additionally, there may be some weak dipole-dipole interactions between polar molecules in the nail polish remover solution.
The main intermolecular forces present in gasoline are London dispersion forces, which arise from temporary fluctuations in electron distribution in the molecules. These weak forces allow the molecules to attract each other and remain in a liquid state at room temperature.
In Kr (krypton), the main type of intermolecular force present is London dispersion forces. These forces result from temporary fluctuations in electron density around the atom, causing temporary dipoles that attract neighboring atoms. Kr, being a noble gas, does not exhibit any permanent dipoles or hydrogen bonding.
ionic
In NH3 (ammonia), the intermolecular forces present are hydrogen bonding, which occurs between the hydrogen atom on one NH3 molecule and the lone pair of electrons on the nitrogen atom of another NH3 molecule. This is a type of dipole-dipole attraction.