You could titrate equal volumes of 1M solution of NaOH and 1M solution of HCl to obtain 1M solution of NaCl.
Sodium hydroxide solution will be on the top.
The pH of PBS is 7.4, which makes it slightly basic. 1M HCl solution has the pH of 1. While it's true that adding a base to an acid will change the pH of the acid, unless you use a very dilute sample of HCl and a very large sample of PBS you will need a very sensitive pH meter to see any pH change.
The normality of 1M oxalic acid is 1N. This means that every mole of oxalic acid in 1 liter of solution has the capacity to donate or accept 1 equivalent of acid-base species.
The term molar it refers a form to know the concentration of a solution, and it is equivalent to a molar unit in a litre of solvent 1 Molar (1M) = 1 mole (molecular weight from the structure you are interested in) / 1000 mL or 1 L. Milimolar is the thousandth part from a solution 1M
by adding 158.0g in 1 liter water.
The ph. for this 1M Na2C4H2O4 solution can be found using the kA and the equation pH = pKa + log([base]/[acid]) This salt Na2C4H2O4 is going to increase the concentration of base in the solution.
You could titrate equal volumes of 1M solution of NaOH and 1M solution of HCl to obtain 1M solution of NaCl.
To prepare 1M H2SO4 solution, you would need to dilute concentrated sulfuric acid (approximately 18M) by adding the appropriate amount of water. To make 1L of 1M H2SO4 solution, you would mix approximately 55.5 mL of concentrated sulfuric acid with about 944.5 mL of water in a volumetric flask while taking proper safety precautions.
To prepare 0.02M NaOH from 1M NaOH solution, you will need to dilute the 1M solution. Use the formula: C1V1 = C2V2, where C1 is the concentration of the stock solution (1M), V1 is the volume of the stock solution you will use, C2 is the desired concentration (0.02M), and V2 is the final volume of the diluted solution. Calculate the volume of 1M NaOH solution (V1) needed to make the desired 0.02M concentration and dilute it with water to reach the desired volume (V2).
To make a 0.1M solution from a 1M HCL solution, you would dilute the 1M HCL with 10 parts of water (or whatever solvent you are using). For example, mix 1 mL of 1M HCL with 9 mL of water to obtain a 0.1M HCL solution.
Add 60g of Glacial Acetic Acid to a 1 liter volumetric flask. Make up to the mark with deionized water. The result is 1M acetic acid solution.
To prepare 1M Tris-HCl from a 10mM solution, you would need to dilute the 10mM solution by a factor of 100. This means you would mix 1 part of the 10mM solution with 99 parts of water to achieve a final concentration of 1M Tris-HCl.
Mixing equal quantities of 1M HCl and 1M NaOH solutions will give a neutral solution because they will react to form water and a salt (NaCl).
1M glucose means that 1 mole of glucose is dissolved in 1kg of water. Since 1M means 1 molal. And molality is equla to no.of moles of solute per kg of water.
A 1M solution of sodium carbonate means that it contains 1 mole of sodium carbonate dissolved in 1 liter of solvent (usually water). This concentration is used in chemistry to describe the amount of the solute (sodium carbonate) present in the solution.
You would need to dilute the 6M acetic acid solution by adding the appropriate volume of water. To prepare 500 mL of 1M solution, you would need to take (1/6)th of the volume of the 6M solution, which is (1/6) x 500 mL = 83.33 mL of the 6M solution. Dilute this with water to reach a final volume of 500 mL.