The main ion responsible for depolarizing the sarcolemma is sodium (Na+).
Acetylcholine binding causes nicotinic acetylcholine receptors on the folded sarcolemma to open, allowing the influx of sodium ions into the muscle cell. This initiates an action potential that propagates along the sarcolemma and into the T-tubules, triggering muscle contraction.
chemically gated channels
Chemically gated ion channels in the plasma membrane are sensitive to specific molecules that bind to them, causing the channel to open or close. This allows for the controlled movement of ions across the membrane in response to chemical signals, regulating processes such as muscle contraction and neurotransmission.
A nerve generates an action potential through a series of events involving the opening and closing of ion channels. Initially, a stimulus causes sodium channels to open, allowing an influx of sodium ions, depolarizing the cell membrane. This triggers the opening of voltage-gated sodium channels, leading to a rapid depolarization phase and the propagation of the action potential along the nerve.
Yes, the membranes of dendrites contain chemically gated ion channels. These channels open or close in response to specific neurotransmitters binding to their receptors, allowing ions such as sodium, potassium, or calcium to flow into or out of the dendrite. This ion movement is crucial for generating electrical signals in dendrites and communication between neurons.
Acetylcholine binding causes nicotinic acetylcholine receptors on the folded sarcolemma to open, allowing the influx of sodium ions into the muscle cell. This initiates an action potential that propagates along the sarcolemma and into the T-tubules, triggering muscle contraction.
The sarcoplasmic reticulum are the membranous interconnecting channels and sacs that surround and run parallel to the myofibrils.
chemically gated channels
Chemically Gated Channels.
An incoming action potential to an alpha motor neuron causes acetylcholine (Ach)release at the end plate, Ach binds to Ach receptors on the sarcolemma causing a sodium influx which causes depolarization.
Chemically gated ion channels in the plasma membrane are sensitive to specific molecules that bind to them, causing the channel to open or close. This allows for the controlled movement of ions across the membrane in response to chemical signals, regulating processes such as muscle contraction and neurotransmission.
A nerve generates an action potential through a series of events involving the opening and closing of ion channels. Initially, a stimulus causes sodium channels to open, allowing an influx of sodium ions, depolarizing the cell membrane. This triggers the opening of voltage-gated sodium channels, leading to a rapid depolarization phase and the propagation of the action potential along the nerve.
The membrane potential that occurs due to the influx of Na+ through chemically gated channels in the receptive region of a neuron is called the excitatory postsynaptic potential (EPSP). This influx of Na+ leads to depolarization of the neuron, bringing it closer to the threshold for generating an action potential. EPSPs can summate to trigger an action potential if they reach the threshold potential.
Chloride ions can pass into the cell through voltage-gated chloride channels and ligand-gated chloride channels. These channels allow for the movement of chloride ions across the cell membrane in response to changes in voltage or binding of specific ligands.
Yes, the membranes of dendrites contain chemically gated ion channels. These channels open or close in response to specific neurotransmitters binding to their receptors, allowing ions such as sodium, potassium, or calcium to flow into or out of the dendrite. This ion movement is crucial for generating electrical signals in dendrites and communication between neurons.
Closed means just that...not open and unable to allow sodium ions to flow. Inactivated means that they do not respond to the stimulus. They could be open or closed, but do not receive the signal from the messenger. Also refractory.
When sodium channels stay open, sodium ions continue to flow into the nerve cell, depolarizing the cell membrane. This depolarization can trigger an action potential, leading to the propagation of the electrical signal along the nerve. If the sodium channels remain open for an extended period, it can disrupt the normal balance of ions across the cell membrane, affecting the nerve's ability to transmit signals accurately.