To calculate the mass of CO2 produced from 128.00 g of O2, you need to use the balanced chemical equation for the reaction. The molar ratio between O2 and CO2 is 1:2, so if you have 128.00 g of O2, you can calculate the mass of CO2 produced by first converting grams of O2 to moles, then using the mole ratio to find the moles of CO2, and finally converting moles of CO2 to grams.
To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
To convert grams to moles, you need to know the molar mass of the substance. Divide the given mass in grams by the molar mass to find the number of moles. This calculation is done using the formula: moles = grams / molar mass.
To find the mass of argon in grams for 100 moles, you can use the molar mass of argon, which is approximately 40 grams per mole. Therefore, the mass of 100 moles of argon would be calculated as follows: 100 moles × 40 g/mole = 4000 grams. Thus, there are 4000 grams of argon in 100 moles.
We need to know the number of moles of WHAT is to react with the butane to provide you with an answer.
To calculate the mass of CO2 produced from 128.00 g of O2, you need to use the balanced chemical equation for the reaction. The molar ratio between O2 and CO2 is 1:2, so if you have 128.00 g of O2, you can calculate the mass of CO2 produced by first converting grams of O2 to moles, then using the mole ratio to find the moles of CO2, and finally converting moles of CO2 to grams.
Assume the compound has a molar mass of 100 grams, from the information given, 32.2 grams is Calcium and 67.8 grams is Nitrogen.You then find the moles of each, which would be moles of Ca and moles of N.Dividing the two moles gives you the mole fraction: which we approximate to 6. This means that for every 1 mole of Ca, there are 6 moles of N, thus the answer is
all you have to do to fine the moles of any element is divide the given grams by the molar mass (which you can find on a periodic table of elements) Likewise, if you need to find the grams, just multiply the number of moles by molar mass. moles = grams/molar mass grams = moles x molar mass your equation should look like this: moles = 89.0 / 17.0 moles = .471
To calculate the amount of AlO produced, you first need to determine the limiting reactant by converting the grams of Al and FeO to moles, then comparing their molar ratios. Once you find the limiting reactant, use stoichiometry to calculate the moles of AlO produced. Finally, convert the moles of AlO to grams. The same steps can be used to find the amount of Fe produced.
To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
To find the number of moles of Na in 42 grams, we can use the molar mass of Na, which is approximately 23 grams/mol. First, calculate the number of moles by dividing the given mass by the molar mass: 42 grams / 23 grams/mol = 1.83 moles of Na.
Multiply the number of moles by the molecular weight of the compound (or atomic weight for an element) to find the mass in grams.
To find the number of grams of CaBr2 in 0.31 moles, you first calculate the molar mass of CaBr2, which is approximately 199.89 g/mol. Then, you can multiply the number of moles (0.31 moles) by the molar mass to find the grams: 0.31 moles x 199.89 g/mol = 61.97 grams of CaBr2.
To find the number of moles in 57 grams of Xenon, divide the given mass (in grams) by the molar mass of Xenon. The molar mass of Xenon is 131.3 grams/mol. Therefore, 57 grams of Xenon is equal to 0.434 moles (57/131.3).
To find the mass, we divide by Avogadro's number to find the amount of moles. We then multiply the moles by the molar mass of the compound which is 60.08 grams. Doing all of this, we get a mass in grams of 5.59 grams.
15 moles O2 (32 grams/1 mole O2) = 480 grams
To find the number of moles, you need to divide the given mass (85 grams) by the molar mass of AgNO3 (169.87 g/mol). 85 grams of AgNO3 represents 0.500 moles.