When silver nitrate and strontium iodide react, a double displacement reaction occurs. Silver iodide and strontium nitrate are formed as products. Silver iodide is a yellow precipitate while strontium nitrate remains in solution.
When aqueous solutions of silver nitrate and sodium iodide [note correct spelling] are mixed, silver iodide solid precipitates from the mixture.
Silver nitrate for example: AgI(s) silver iodide
When calcium nitrate (Ca(NO₃)₂) reacts with potassium iodide (KI), the balanced chemical equation is: [ \text{Ca(NO}_3\text{)}_2 + 2 \text{KI} \rightarrow \text{CaI}_2 + 2 \text{KNO}_3 ] In this reaction, one mole of calcium nitrate reacts with two moles of potassium iodide to produce one mole of calcium iodide and two moles of potassium nitrate.
barium nitrate is aqueous because all nitrates are soluble.
Aqueous lead nitrate plus aqueous sodium iodide produce solid lead iodide and aqueous sodium nitrate.
When silver nitrate and strontium iodide react, a double displacement reaction occurs. Silver iodide and strontium nitrate are formed as products. Silver iodide is a yellow precipitate while strontium nitrate remains in solution.
Pb(NO3)2(aq) + 2NaI(aq) → PbI2(s) + 2NaNO3(aq) Aqueous lead II nitrate reacts with aqueous sodium iodide to form solid lead II iodide precipitate and aqueous sodium nitrate.
Lead(II) nitrate and sodium iodide undergo a double displacement reaction to form sodium nitrate and lead(II) iodide, which is a slightly soluble yellow solid. The balanced chemical equation for this reaction is: Pb(NO3)2(aq) + 2NaI(aq) -> 2NaNO3(aq) + PbI2(s)
The net ionic equation for the reaction of aqueous potassium iodide with aqueous lead (II) nitrate is: 2I⁻(aq) + Pb²⁺(aq) -> PbI₂(s)
potassium nitrate would be left was an aqueous solution and lead iodide would be the precipitate
Silver iodide (AgI), a precipitate insoluble in water, don't react with potassium nitrate.
When aqueous solutions of silver nitrate and sodium iodide [note correct spelling] are mixed, silver iodide solid precipitates from the mixture.
The net ionic equation for the reaction between aqueous potassium iodide (KI) and aqueous lead(II) nitrate (Pb(NO3)2) is: 2I- (aq) + Pb2+ (aq) → PbI2 (s)
When reactants lead(II) nitrate and sodium iodide are combined, a double displacement reaction occurs. Lead(II) iodide (insoluble in water) and sodium nitrate are formed, leading to a white precipitate of lead(II) iodide and a solution of sodium nitrate.
When potassium iodide and lead nitrate are combined, a double displacement reaction occurs, resulting in the formation of lead iodide and potassium nitrate. Lead iodide is a yellow precipitate that forms when the two solutions are mixed.
Pb(NO3)2(aq)+2NaI(aq)=2NaNO3(aq)+PbI2(s)