Line to line voltage is not the same as line to neutral voltage because line voltages are 120 degrees apart. They are related by: Line to neutral voltage * tan (120 degrees) = Line to neutral voltage * 1.73.Additional CommentFor delta-connected systems, the line voltage is the same as the phase voltage.For wye-connected systems, the line voltage is larger than the phase voltage by a factor of 1.732. The reason for this is as follows:Because any two phase voltages are displaced from each other by 120o, they must be added vectorially, not algebraically, to find the line voltage. As the above answer points out, this means that the relationship between the two is the square-root of 3, or 1.732.
It depends on the type of three-phase system. If it's a three-wire system, then the phase voltage is numerically equal to the line voltage. If it's a four-wire system, then the phase voltage is numerically equal to the line voltage divided by 1.732 -in your example, this works out to be 5.77 V.
The Voltage produced by the generator will be like 3 sets of your home's voltage (assuming we're looking at an outlet and not the 220V at the brkr box).Each phase (sinusoidal wave) will be separated by 120 degrees, so when the 1st phase starts the 2nd phase will start 1/20th of a second later. The 3rd phase then starts 1/40th of a second later, and the 1st phase starts again 1/60th of a second later which is the beginning of the second set of sin waves. This of course is based on the N. American Frequency of 60 hertz which is 60 cycles (waves) per second.AnswerFor a three-phase, three-wire, system the line voltages will be identical to the phase voltages.For a three-phase, four-wire, system the line voltages will be 1.732 times the value of the phase voltages.
The Line normally refers to the live wire in a single-phase system and the three live wire of a 3-phase system. In a 3-phase system the line voltage is usually quoted as the nominal voltage, and that is the voltage between any two of the live wires. The voltage between one of the lines and neutral is 1/sqrt(3) times less.
Phase voltage is determined by the wiring of transformer that serves the building. To test phase voltage use a volt meter and put one probe to ground and the other to each phase and observe the reading, this will give you a phase to ground voltage reading. Next test phase to phase (1 to 2, 1 to 3, and 2 to 3) to see if it's 208, 240, 277, or 480. Only licensed electricians should perform these tests. DAW
The line-to-neutral (not 'phase-to-neutral'!) voltage on a 400V 3-Phase wye-connected system is 230V.Line voltage is the voltage as measured between any two (2) line conductors (hence its name!). Line voltage is often referred to as the 'line-to-line voltage'.Phase voltage is the voltage as measured between any single line and neutral. Phase voltage is often referred to as a 'line-to-neutral' voltage."400V" on a 400V 3-Phase wye-connected power supply indicates its line voltage. Line voltage in a wye system is always the phase voltage multiplied by the square-root of "3" (1.732) and reflects the vector sum of two individual phase voltages present in a three phase system.Thusly, if the line voltage is "400V", then the phase voltage is 400V divided by the square-root of "3" (1.732), which is 230V.Examples of this for North American power systems are 120/208V, 277/480V and 347/600V. Examples for other areas of the world are 220/380V, 230/400V and 240/415V.
Three-phase voltage in Germany is 400V, single-phase voltage is 230V.
400V
The formula to use is, phase voltage /1.73 = phase to neutral (ground) voltage.CommentThere is no such thing as a 'phase to phase', or 'phase to neutral' voltage. The correct terms are 'line to line' and 'line to neutral'. So the above answer should read: line voltage/1.73= line to neutral voltage = phase voltage.
To calculate the kVA for a 3-phase system, you can use the formula: kVA = √3 × Voltage × Current / 1000. For a 3-phase system with a line voltage of 400V and a current of 100A, the calculation would be: kVA = √3 × 400V × 100A / 1000 ≈ 69.28 kVA. Therefore, the system is approximately 69.28 kVA.
To calculate the three-phase voltage in New Zealand, you typically use the formula for line-to-line voltage (V_L) in a three-phase system, which is V_L = √3 × V_Ph, where V_Ph is the line-to-neutral voltage. In New Zealand, the standard line-to-neutral voltage is 230V, so the line-to-line voltage would be approximately 400V (230V × √3). Ensure that the system's configuration (such as star or delta) is taken into account when performing calculations.
KVA means product of voltage and current. For 3 phase generator, its KVA = (1.732 X (Line Voltage) X Current)/1000.Put line voltage in this equation and get current.
There is phase to phase voltage in 3 phase system.AnswerYou don't get voltage 'phase-to-phase'; it's 'line-to-line'!
To convert a 440V line voltage to phase voltage in a three-phase system, you divide the line voltage by the square root of 3 (approximately 1.732). This means the phase voltage is calculated as ( V_{phase} = \frac{V_{line}}{\sqrt{3}} ). For 440V line voltage, the phase voltage would be approximately 254V.
I will try and make this as simplified as possible. The secondary side of transfomers are connected in star - which means there is a neutral / earth connection. If you measure between a LINE to LINE ('line voltage') voltage you will measure 400V, but now we have introduced the neutral / earth and we measure between LINE to NEUTRAL ('phase voltage) 's LINE to EARTH we will get 230 V. The reason for this is that, because the phase voltages are displaced, in time, by 120 electrical degrees, you must add them vectorially to obtain the line voltage. And the vectorial sum of two 230-V phase voltages, displaced by 120 degrees, is 400 V -or 1.732 times either of the phase voltages.
yes it can
The voltage you are referring to is a 'line-to-line' voltage ('line voltage'), as there is no such thing as a 'phase-to-phase' voltage.480 volts. In real life, the voltage will vary slightly by up to 3% (14 V) on a properly sized circuit. Line to neutral will measure 277 volts, plus or minus 3%.