It will only bind with the enzymes active site of the shapes are complimentary and enzymes are very specific
Yes.
Enzymes are proteins, which are made up of amino acids. Each enzyme has a different sequence of amino acids and changing even one amino acid will mean that the tertiary structure of the enzyme will be lost and so will it's active site. As enzymes are substrate specific, only a certain substrate will bind to its active site, due to its amino acid sequence determining the shape of the active site.
Enzymes are proteins that catalyse (speed up) a reaction. They are very specific; enzymes will only bind a very specific molecule (or molecules containing a very specific chemical group). They normally have no effect on molecules that are not their substrate (the specific type of molecule they can interact with). Enzymes work because they have a specific shape and an 'active site'. The active site is the part of the enzyme that will bind its substrate and it may be charged in specific places so that it attracts and binds tightly to the substrate. Because the active site is the right shape and charge for the substrate, it can bind it efficiently and when it does this it causes the enzyme to change shape and catalyse a chemical reaction. Other molecules that are the wrong size, shape or charge will simply not fit into the active site or will be repelled, so the enzyme doesn't affect them. Some enzymes contain complex metal ions at their active site which help create the right conditions to bind the substrate, by adding a certain charge in a certain place. Enzymes can be 'fooled' by molecules of a very similar size, shape and charge as their normal substrate. Many toxins work in this way, by being similar to a certain molecule that the enzyme normally binds to. The toxins cause a problem because they are slightly different from the actual substrate and so don't react but just occupy the active site permanently or until they fall out. This means that the enzyme is useless.
A substrate molecule will only fit into the active site if it is a complimentary shape. Also the amino acids that make up an enzyme have positively and negatively charged chemical groups so in orderr for a substrate to fit its active site any electrical charges on the substrate molecule must not be repelled by like charges on the enzyme so the charged groups on the enzyme molecule and substrate molecule must attract one another
They actually bind to a substrate as the term reactant is usually used in chemistry. They fit into what we call an active site just like a key will fit into a lock. The key must be the correct key or the reaction will not occur. So the enzyme is said to be specific for that substrate.
Yes.
The bind in the active site.
substrate can fit into, due to complementary shapes and charges. This allows the enzyme to specifically catalyze a particular reaction. Any changes to the active site can impact the enzyme's ability to bind to its substrate and perform its function.
Enzymes have specific active sites that bind to substrates in a complementary manner based on their shape and chemical properties. This specificity allows enzymes to interact with only certain substrates or closely related ones that can fit into their active sites. Any mismatches in shape or chemical properties may prevent effective binding and inhibit the enzyme's activity.
The substrate is the molecule that binds to the active site of an enzyme. The active site is a region on the enzyme where the substrate binds and undergoes a chemical reaction. The specificity of the active site allows only certain substrates to bind and react with the enzyme.
Enzymes are proteins, which are made up of amino acids. Each enzyme has a different sequence of amino acids and changing even one amino acid will mean that the tertiary structure of the enzyme will be lost and so will it's active site. As enzymes are substrate specific, only a certain substrate will bind to its active site, due to its amino acid sequence determining the shape of the active site.
Enzymes are proteins that catalyse (speed up) a reaction. They are very specific; enzymes will only bind a very specific molecule (or molecules containing a very specific chemical group). They normally have no effect on molecules that are not their substrate (the specific type of molecule they can interact with). Enzymes work because they have a specific shape and an 'active site'. The active site is the part of the enzyme that will bind its substrate and it may be charged in specific places so that it attracts and binds tightly to the substrate. Because the active site is the right shape and charge for the substrate, it can bind it efficiently and when it does this it causes the enzyme to change shape and catalyse a chemical reaction. Other molecules that are the wrong size, shape or charge will simply not fit into the active site or will be repelled, so the enzyme doesn't affect them. Some enzymes contain complex metal ions at their active site which help create the right conditions to bind the substrate, by adding a certain charge in a certain place. Enzymes can be 'fooled' by molecules of a very similar size, shape and charge as their normal substrate. Many toxins work in this way, by being similar to a certain molecule that the enzyme normally binds to. The toxins cause a problem because they are slightly different from the actual substrate and so don't react but just occupy the active site permanently or until they fall out. This means that the enzyme is useless.
A substrate molecule will only fit into the active site if it is a complimentary shape. Also the amino acids that make up an enzyme have positively and negatively charged chemical groups so in orderr for a substrate to fit its active site any electrical charges on the substrate molecule must not be repelled by like charges on the enzyme so the charged groups on the enzyme molecule and substrate molecule must attract one another
They actually bind to a substrate as the term reactant is usually used in chemistry. They fit into what we call an active site just like a key will fit into a lock. The key must be the correct key or the reaction will not occur. So the enzyme is said to be specific for that substrate.
The substrate binds to the active site.
Active sites of enzymes (where the substrates fit in) are substrate specific, and are complementary to the shape of the molecule (substrate). In this way, enzymes can only act on a specific substrate, since that is the only shape that it will accommodate in the active site.
Enzymes are substrate specific; meaning that their active site only allows for a certain substrate to bind - in this case, pectin, and the enzyme has no effect on any other biological molecules