"If swallows can fly then I am a monkey's uncle"
Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.
A counterexample is a specific case in which a statement is false.
False. A declaration is a public statement.
One statement about menopause that is false is that it cannot happen to a woman in her 40s.
paradox
A conditional statement is indeed a statement that can be put in the form "if A, then B". The only time this conditional statement is false is when both A is true and also B is false.Read more: http://wiki.answers.com/What_is_a_conditional_statement#ixzz1lda5tB6E
by switching the truth values of the hypothesis and conclusion, it is called the contrapositive of the original statement. The contrapositive of a true conditional statement will also be true, while the contrapositive of a false conditional statement will also be false.
false
False
The statement is false. The conditional statement "If P, then Q" and its converse "If Q, then P" are distinct statements, but the negation of the converse would be "It is not the case that if Q, then P." Thus, the conditional and the negation of the converse are not equivalent or directly related.
false
A conditional statement typically has the form "If P, then Q," where P is the antecedent and Q is the consequent. A conditional is considered false only when the antecedent is true and the consequent is false. However, if the antecedent is false, the conditional is automatically considered true, regardless of the truth value of the consequent. This means that a false antecedent does not make the entire conditional false.
A conditional statement typically has the form "If P, then Q." A counterexample is a specific instance where P is true but Q is false, thereby disproving the conditional statement. Therefore, while a conditional statement does not inherently consist of counterexamples, a counterexample serves to challenge or refute the validity of a given conditional statement.
The IF part of a conditional statement sets the condition or criteria that needs to be met for the subsequent action to occur. It is the part that is evaluated as either true or false, determining the flow of the statement.
No, the conditional statement and its converse are not negations of each other. A conditional statement has the form "If P, then Q," while its converse is "If Q, then P." The negation of a conditional statement would be "P is true and Q is false," which is distinct from the converse. Thus, they represent different logical relationships.
a condtional statement may be true or false but only in one direction a biconditional statement is true in both directions
A conditional statement uses the words if... Then