no
Yes, if you sacrifice amplitude for frequency.
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.
The frequency of a red photon is typically around 430-480 Terahertz (THz), corresponding to a wavelength range of approximately 620-750 nanometers.
The energy of a photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the photon. Plugging in the values, the energy of a photon of red light with a frequency of 4.48 x 10^14 Hz is approximately 2.98 x 10^-19 Joules.
The violet light has more energy than the red light. Red light is lower on the electromagnetic spectrum, meaning it has a lower frequency (or longer wavelength). You'll recall the colors of the rainbow as red, orange, yellow, etc., and these are the colors going up the frequency spectrum. Photons higher on the spectrum are higher in frequency and energy.
red + black
voilet
the colors red and blue make violet.
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
They are red, orange, yellow, green, blue, indigo, voilet
The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.
The 7 colors of the rainbow is VIBGYOR. They are: voilet, indigo, blue, green, yellow, orange, red.
an Epophytic orchid can be driffrent colors such as white,red,pink.orange,and purple(voilet)
he duble hockey sticks no.
In Hawaiian, "voilet" can be translated as "wailoa."
The frequency of a red photon is typically around 430-480 Terahertz (THz), corresponding to a wavelength range of approximately 620-750 nanometers.
yellow - voilet - brown or yellow - voilet - black - black