No, current does not flow through a circuit by taking the path of least resistance. Instead, current flows through all available paths in a circuit, with the amount of current in each path determined by the resistance of that path.
Oh, dude, it's like when you put a resistor in a circuit. It's like that annoying friend who slows down the group when you're trying to get somewhere - they just resist the flow of current, making it harder for electricity to move through. So yeah, resistors reduce the flow of current, like that friend who always suggests taking the scenic route.
It would depend on the circuit diagram. In some cases, the circuit would be incomplete (simplest case is a battery with a wire attached to just one terminal).Parallel branches that have a connection to the battery without going through other branches are independent of each other. Say you have two parallel branches and a battery. If you short circuit one of the branches, the other branch will not be affected but the battery will be (current through the battery would decrease because taking out a parallel branch increases resistance).In short, it would depend on the circuit diagram. Note that for a nanosecond, there would be current in an open circuit, but after this brief time there would be no current flow in the segment of the circuit that has been shorted.
If you have a lamp, you can assume that the resistance of the lamp when it is under power will follow the ohms law. BUT, one thing you must remember is, when a lamp is under load, it is glowing HOT. When metal is HOT, the molculoes of the meals are in much more active state. When this happens, the resistance will increase. Conversely, when the lamp is NOT on ON state, the filaments are cold. Moleculoes in the filaments are not as active. Thus, the resistance is lower. There is almost 10 to 1 difference in resistance from hot to cold. Taking out a multimeter and measuring the resistance of the lamp will not help you determine the resistance of the lamp when it is actually under load (with voltage applied) Really, the only thing you can do is to measure the voltage, measure the current, then arrive at the resistance mathmatically.
A voltmeter is designed to operate like a very large resistor (order of megaOhms), in parallel to the circuit that it is measuring. As long as the voltmeter resistance is much larger than the circuit that it is measuring, it will draw very little current away from the circuit and will only minimally disturb the operating circuit. See related link. If the voltmeter is connected in series with the rest of the circuit, then that is the same as connecting a very large resistor in series.So for example if you have 10 volt battery and a 10 ohm resistor, that would be 1 amp (without the voltmeter). Now if the voltmeter is 10 megaohm, the total resistance is 10000010 ohms, so the current is 0.999999 microamperes, and the voltage across the 10 ohm resistor is 9.99999 microvolts, while the voltage across the voltmeter is 9.999990 Volts (these numbers are rounded, but you get the idea).Suppose you put in series with a 1 kiloOhm (not sure about that spelling) resistor. The total resistance is 10001000 ohms, and current is 0.99990 microamperes, the voltage across resistor is now 0.9999 millivolts (it was microvolts) and the voltage across the voltmeter is 9.9990001 volts
No. But it's designed to do its job by taking advantage of air resistance.
Taking some bulbs out of the circuit!! (I think :P) Taking some bulbs out of the circuit!! (I think :P) Use Ohm's law I = E/R. Add some values and check it out. You use the formula V = IR (where V and E are the same thing, voltage. I is the current. R is the resistance). If you add more resistance then your current will be lower. I would suggest looking at parallel and series resistance so that you can understand equivalent resistance.
No it does not. A volt meter only reads the current that is passing through it.AnswerAll instruments draw some (albeit tiny) current from the circuit under test in order to operate. So, if this is what you mean by 'taking power from circuit', then the answer is yes, it does.Instruments also change the normal resistance of the circuit being tested -for example, ammeters increase the resistance of the circuit into which they are connected, while voltmeters decrease the circuit resistance across which they are connected. So adding a voltmeter (or an ammeter) to a circuit affects the operation of that circuit to some degree. To minimise this interference, it is important that an ammeter's internal resistance is very much lower than the circuit's resistance, and a voltmeter's resistance is very much higher than the circuit's resistance.
As Ohm's law states; Current is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit.
The total resistance of a set of resistors in parallel is found by adding up the reciprocals of the resistance values, and then taking the reciprocal of the total. By removing a resistor the total current will lower. If you short out the parallel circuit as suggested it will take out the fuse that should be protecting the circuit.AnswerShorting-out a resistor in a parallel circuit, will act to short out the entire circuit, therefore, significantly increasing, not lowering, the current! And, as the previous answer indicates, this short-circuit current will operate any protective devices, such as a fuse.In a parallel circuit current does not lower but it will be increase if shorting-out one resistor in the two resistor parallel circuit, the circuit will become very low resistive and the larger current will flow through the short path.
In a circuit, the voltage drop is located wherever there is resistance. Ohm's law: voltage = resistance * current; so without resistance there can be no voltage drop, with resistance there is.
Consider the instantaneous DC analysis. Initially, the capacitor has zero resistance. You apply a voltage and current is controlled by other resistive elements alone. As the capacitor charges, its effective resistance rises. This adds to the net resistance in the circuit, reducing current. At full charge, the capacitor has infinite resistance, so there is no current. Remember that the equation for a capacitor is dv/dt = i/c.
Oh, dude, it's like when you put a resistor in a circuit. It's like that annoying friend who slows down the group when you're trying to get somewhere - they just resist the flow of current, making it harder for electricity to move through. So yeah, resistors reduce the flow of current, like that friend who always suggests taking the scenic route.
It would depend on the circuit diagram. In some cases, the circuit would be incomplete (simplest case is a battery with a wire attached to just one terminal).Parallel branches that have a connection to the battery without going through other branches are independent of each other. Say you have two parallel branches and a battery. If you short circuit one of the branches, the other branch will not be affected but the battery will be (current through the battery would decrease because taking out a parallel branch increases resistance).In short, it would depend on the circuit diagram. Note that for a nanosecond, there would be current in an open circuit, but after this brief time there would be no current flow in the segment of the circuit that has been shorted.
When electricity takes a new path that is shorter than normal or in the electrical trade it is know as, current taking the path of least resistance, it is known as a short circuit.
If you have a lamp, you can assume that the resistance of the lamp when it is under power will follow the ohms law. BUT, one thing you must remember is, when a lamp is under load, it is glowing HOT. When metal is HOT, the molculoes of the meals are in much more active state. When this happens, the resistance will increase. Conversely, when the lamp is NOT on ON state, the filaments are cold. Moleculoes in the filaments are not as active. Thus, the resistance is lower. There is almost 10 to 1 difference in resistance from hot to cold. Taking out a multimeter and measuring the resistance of the lamp will not help you determine the resistance of the lamp when it is actually under load (with voltage applied) Really, the only thing you can do is to measure the voltage, measure the current, then arrive at the resistance mathmatically.
yes ,they can be connected ,then they both will drive the current through that resistance ,the current through that resistance will be the sum of currents due to each individual source taking only one at a time (use superpositon theorem)
A voltmeter is designed to operate like a very large resistor (order of megaOhms), in parallel to the circuit that it is measuring. As long as the voltmeter resistance is much larger than the circuit that it is measuring, it will draw very little current away from the circuit and will only minimally disturb the operating circuit. See related link. If the voltmeter is connected in series with the rest of the circuit, then that is the same as connecting a very large resistor in series.So for example if you have 10 volt battery and a 10 ohm resistor, that would be 1 amp (without the voltmeter). Now if the voltmeter is 10 megaohm, the total resistance is 10000010 ohms, so the current is 0.999999 microamperes, and the voltage across the 10 ohm resistor is 9.99999 microvolts, while the voltage across the voltmeter is 9.999990 Volts (these numbers are rounded, but you get the idea).Suppose you put in series with a 1 kiloOhm (not sure about that spelling) resistor. The total resistance is 10001000 ohms, and current is 0.99990 microamperes, the voltage across resistor is now 0.9999 millivolts (it was microvolts) and the voltage across the voltmeter is 9.9990001 volts