answersLogoWhite

0

No, when you are sleeping, your heart continues to beat and you are still continuously breathing, and moving is a form of kinetic energy, so there is still kinetic energy when you are sleeping. Written by Brigitte.P age 13

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Physics

Is it possible for a person to have zero mechanical energy?

No, it is not possible for a person to have zero mechanical energy. Mechanical energy is the sum of an object's kinetic and potential energy, and as long as the person is in motion or has the potential to be in motion, they will have mechanical energy.


Does a person standing motionless in the aisle of a moving bus have kinetic energy?

Velocity depends on the point of view, or as they say in physics, on the "frame of reference". The amount of kinetic energy depends on velocity, and therefore, it also depends on the frame of reference.From the point of view of someone else who is also standing in the bus, such as person would have zero velocity and zero kinetic energy. From the point of view of one who watches the bus from the outside (standing still, near the road for example), the velocity, and therefore also the kinetic energy, of the person being considered will be non-zero.


Can you have kinetic energy without momentum?

We don't think you can. Here's our reasoning: -- Kinetic energy of an object is [(1/2)(mass)(speed)2]. If kinetic energy is not zero, then mass can't be zero, and speed can't be zero either. -- Momentum of the object is [(mass)(speed)]. If mass isn't zero and speed isn't zero, then momentum isn't zero.


Can a body have kinetic energy without having momentum?

Momentum = (mass) x (speed) Kinetic Energy = 1/2 (mass) x (speed)2 It looks like the only way a body can have zero momentum is to have either zero mass or else zero speed, and if either of those is zero, then that makes the KE also zero as well, too. So the answer to the question is apparently: no.


Why velocity of a mass attached to a spring is maximum at mean positions and zero at extreme positions?

This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.

Related Questions

When does zero kinetic energy occur?

kinetic energy is zero when the body is at rest.


Is it possible for a person to have zero mechanical energy?

No, it is not possible for a person to have zero mechanical energy. Mechanical energy is the sum of an object's kinetic and potential energy, and as long as the person is in motion or has the potential to be in motion, they will have mechanical energy.


How does a yo-yo transer potential energy to kinetic energy and back to potential energy as it moves up and down the string?

When the yo-yo is being held in the person's hand, it has maxium potential energy, and zero kinetic energy. When the yo-yo drops on the string from the person's hand, it's velocity increases due to the acceleration due to gravity, increasing kinetic energy and reducing potential energy. When the yo-yo is at its greatest distance from the person's hand, it has maximum kinetic energy, and zero potential energy. When the yo-yo moves back up the string, its kinetic energy decreases and its potential energy increases. Once the yo-yo is back in the person's hand, it again has maximum potential energy, and zero kinetic energy.


Does a person standing motionless in the aisle of a moving bus have kinetic energy?

Velocity depends on the point of view, or as they say in physics, on the "frame of reference". The amount of kinetic energy depends on velocity, and therefore, it also depends on the frame of reference.From the point of view of someone else who is also standing in the bus, such as person would have zero velocity and zero kinetic energy. From the point of view of one who watches the bus from the outside (standing still, near the road for example), the velocity, and therefore also the kinetic energy, of the person being considered will be non-zero.


Does a person standing in motionless in the aisle of a moving bus have kinetic energy?

Velocity depends on the point of view, or as they say in physics, on the "frame of reference". The amount of kinetic energy depends on velocity, and therefore, it also depends on the frame of reference.From the point of view of someone else who is also standing in the bus, such as person would have zero velocity and zero kinetic energy. From the point of view of one who watches the bus from the outside (standing still, near the road for example), the velocity, and therefore also the kinetic energy, of the person being considered will be non-zero.


What point in the ride is the kinetic energy of the car zero?

The kinetic energy of the car becomes zero when the car halts. If it halts on top of a hill, the energy changes to potential energy.


Can you have kinetic energy without momentum?

We don't think you can. Here's our reasoning: -- Kinetic energy of an object is [(1/2)(mass)(speed)2]. If kinetic energy is not zero, then mass can't be zero, and speed can't be zero either. -- Momentum of the object is [(mass)(speed)]. If mass isn't zero and speed isn't zero, then momentum isn't zero.


Example for a body with zero momentum and some kinetic energy?

No solution. Zero momentum (MV) means either zero mass or zero velocity. Either one results in zero kinetic energy (1/2 MV2).


Can a body have kinetic energy without having momentum?

Momentum = (mass) x (speed) Kinetic Energy = 1/2 (mass) x (speed)2 It looks like the only way a body can have zero momentum is to have either zero mass or else zero speed, and if either of those is zero, then that makes the KE also zero as well, too. So the answer to the question is apparently: no.


Why velocity of a mass attached to a spring is maximum at mean positions and zero at extreme positions?

This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.This can easily be understood with conservation of energy. Assuming that no energy is lost, potential energy is continuously converted to kinetic energy, and vice versa. At the mean position, the potential energy is zero, therefore the kinetic energy (and hence the velocity) is at maximum.


Does a person standing motionless in the aisle of a moving bus have energy?

Velocity depends on the point of view, or as they say in physics, on the "frame of reference". The amount of kinetic energy depends on velocity, and therefore, it also depends on the frame of reference.From the point of view of someone else who is also standing in the bus, such as person would have zero velocity and zero kinetic energy. From the point of view of one who watches the bus from the outside (standing still, near the road for example), the velocity, and therefore also the kinetic energy, of the person being considered will be non-zero.


Would a book on a table one meter above the floor have more kinetic energy than a book resting on a floor?

No. Kinetic energy would be zero in both cases. The book in the higher position has more potential energy.No. Kinetic energy would be zero in both cases. The book in the higher position has more potential energy.No. Kinetic energy would be zero in both cases. The book in the higher position has more potential energy.No. Kinetic energy would be zero in both cases. The book in the higher position has more potential energy.