f =V x m x a
Weight does not affect the speed at which an object falls because all objects experience the same acceleration due to gravity, regardless of their weight. This acceleration is approximately 9.8 m/s^2 on Earth. The force of gravity acting on the object is proportional to its weight, but it is cancelled out by the object's inertia and acceleration, resulting in all objects falling at the same rate.
When air resistance balances the weight of an object that is falling, the object has reached terminal velocity. At this point, the object falls at a constant speed without accelerating further due to the opposing forces being balanced.
Kinetic energy is directly proportional to an object's speed squared, meaning that as an object's speed increases, its kinetic energy increases exponentially. Weight itself does not directly affect an object's kinetic energy, but it can impact the object's speed due to factors like friction and resistance. Ultimately, both speed and weight play a role in determining the kinetic energy of an object in motion.
Weight can affect speed because a heavier object requires more force to move it, which can slow it down. This is due to the increased inertia and friction that comes with greater weight.
Now, this is in very....basic. It also may not be 100% correct. The higher up you are, the more distance you fall. The more distance you fall, the faster you go. You peak at a certain speed, and will continue falling at that speed once it is reached. The max speed differs in the amount of weight falling. (Proven by an Egg falling, or a Feather falling.)
It depends... the object could be falling, going straight, going uphill or going downhill.
Galileo Galilei
The greatest speed a falling object is known as its terminal velocity. At this speed, the drag force from the air is equal to the object's weight, and so there is no net force to accelerate the object further.
Weight does not affect the speed at which an object falls because all objects experience the same acceleration due to gravity, regardless of their weight. This acceleration is approximately 9.8 m/s^2 on Earth. The force of gravity acting on the object is proportional to its weight, but it is cancelled out by the object's inertia and acceleration, resulting in all objects falling at the same rate.
When air resistance balances the weight of an object that is falling, the object has reached terminal velocity. At this point, the object falls at a constant speed without accelerating further due to the opposing forces being balanced.
Kinetic energy is directly proportional to an object's speed squared, meaning that as an object's speed increases, its kinetic energy increases exponentially. Weight itself does not directly affect an object's kinetic energy, but it can impact the object's speed due to factors like friction and resistance. Ultimately, both speed and weight play a role in determining the kinetic energy of an object in motion.
force hits the object and it changes it velocity or speed and its state of motion or rest , push or pull.
Weight can affect speed because a heavier object requires more force to move it, which can slow it down. This is due to the increased inertia and friction that comes with greater weight.
Factors that increase speed of a falling object:HEIGHT - The longer an object is in the air the more speed it gains due to gravityGRAVITY - The strength of the acelleration due to gravity (eg the moon is different to earth)STARTING VELOCITY - The speed the object starts at.Factors that decrease the speed of a falling object:AIR RESISTANCE - Air resistance is a major factor however it in itself is dependant on the air pressure around the object and the surface area of the object.
Now, this is in very....basic. It also may not be 100% correct. The higher up you are, the more distance you fall. The more distance you fall, the faster you go. You peak at a certain speed, and will continue falling at that speed once it is reached. The max speed differs in the amount of weight falling. (Proven by an Egg falling, or a Feather falling.)
force hits the object and it changes it velocity or speed and its state of motion or rest , push or pull.
Yes, the maximum speed of a free falling object is known as terminal velocity. This is the point at which the force of air resistance balances the force of gravity, resulting in a constant velocity. Terminal velocity can vary depending on the object's shape, size, and mass.