answersLogoWhite

0

To calculate the wavelength of a photon emitted in a given scenario, you can use the formula: wavelength speed of light / frequency of the photon. The speed of light is approximately 3.00 x 108 meters per second. The frequency of the photon can be determined from the energy of the photon using the equation E hf, where E is the energy of the photon, h is Planck's constant (6.63 x 10-34 joule seconds), and f is the frequency of the photon. Once you have the frequency, you can plug it into the formula to find the wavelength.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Related Questions

What is the wavelength of the photon emitted when a hydrogen atom goes from the second energy level to the first energy level?

The wavelength of the photon emitted can be calculated using the Rydberg formula: 1/wavelength = R(1/n1^2 - 1/n2^2), where R is the Rydberg constant, n1 is the initial energy level (2 in this case), and n2 is the final energy level (1 in this case). Plugging in the values gives the wavelength of the photon emitted.


What is the energy of a photon emitted with wavelength of 518 nm?

3.84 x 10-19 joules.


How to find the wavelength of a photon?

To find the wavelength of a photon, you can use the equation c / f, where is the wavelength, c is the speed of light (approximately 3.00 x 108 m/s), and f is the frequency of the photon. Simply divide the speed of light by the frequency of the photon to calculate its wavelength.


A photon of wavelength 3000 A is absorbed by a gas and remitted as two photons One of the photons is red 7600 A What is the wavelength of the other photon?

The total energy of a photon with a wavelength of 3000 A is divided into two photons, one red photon with a wavelength of 7600 A, and another photon with a shorter wavelength. To calculate the wavelength of the second photon, you can use the conservation of energy principle, where the sum of the energies of the two new photons is equal to the energy of the original photon. This will give you the wavelength of the other photon.


What is the energy of a photon emitted with a wavelength of NM?

4.44 10-19 j


What is the energy of a photon emitted with a wavelength of 518 mp?

The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values, the energy of a photon with a wavelength of 518 nm is approximately 3.82 eV.


How do you calculate photon wavelength with only the energy of the photons?

Photon Energy E=hf = hc/w thus wavelength w= hc/E or the wavelength is hc divided by the energy of the photon or w= .2 e-24 Joule meter/Photon Energy.


How do you calculate the energy in joules of a photon of green light having a wavelength of 529 nm?

The energy of this photon is 3,7351.10e-19 joules.


How does photon energy change with wavelength?

The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.


What is the wavelength of a photon whose energy is twice that of a photon with a 580 nm wavelength?

Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.


When an electron in atom changes energy states a photon is emitted If the photon has a wavelength of 550 nm how did the energy of the electron change?

The energy of the electron decreased as it moved to a lower energy state, emitting a photon with a wavelength of 550 nm. This decrease in energy corresponds to the difference in energy levels between the initial and final states of the electron transition. The energy of the photon is inversely proportional to its wavelength, so a longer wavelength photon corresponds to lower energy.


What occurs as the wavelength of a photon increases?

As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.