If oxygen-16 was to undergo positron emission (beta plus decay), a proton in its nucleus would transform into a neutron (mediated by the weak force). The oxygen-16 would become nitrogen-16, and we'd see a positron and a neutrino appear. The equation might look like this: 816O => 716N + e+ + ve It is easy to write a balanced nuclear equation for any nuclide undergoing positron emission. Note the subscript numerals at the beginning of each element. That's the atomic number of that element. The superscript numerals are the Atomic Mass of the nuclide. When beta plus decay occurs, nuclear transformation takes place. The atomic number of the element goes down by one, and one element becomes another element. The subscripted numerals will reflect that decrease of one, and the atomic mass (the superscripted numerals) will remain the same. Note the last two factors in the equation, as they are the positron and the neutrino, respectively. That's the long and short of the beta plus decay of O-16, as asked. We'll add, however, that oxygen-16 is a stable isotope of oxygen. It does not undergo beta decay, but for the sake of argument, it did here. And with the results shown. By the way, it is oxygen-15 that is the radioactive isotope of oxygen that will undergo beta plus decay. You'll find links below for more information.
- treatment by irradiation in cancers- scintigraphy- source in positron emission tomography- tracers
A positron is the antimatter counterpart to an electron, with the same mass but opposite charge. When a positron collides with an electron, they annihilate each other, producing energy in the form of gamma rays. Positrons are commonly used in medical imaging techniques such as positron emission tomography (PET).
A beta particle is typically represented by the Greek letter beta (β). In equations, it is often denoted as either β- (beta minus) for an electron emission or β+ (beta plus) for a positron emission.
Protons are converted into neutrons during positron emission to satisfy certain conservation laws, like charge and baryon number. The following reaction takes place during positron emission: p+ --> n + e+ + ve, where p+ is a proton, n is a neutron, e+ is a positron (antielectron), and ve is an electron neutrino. Charge is +1 on both sides of the reaction, and so is conserved. Baryonic number is 1 on both sides of the reaction (both the p+ and the n have baryonic numbers of 1), and so is conserved. Also, lepton number is 0 on both sides of the reaction (e+ has a lepton number of -1 while ve has one of +1, thus adding up to zero), and so is conserved.
Oxygen-15 undergoes beta-plus decay, where a proton is converted into a neutron, resulting in the emission of a positron and a neutrino. The positron subsequently annihilates with an electron, producing two gamma rays. This process results in the formation of nitrogen-15.
The nuclear equation for positron emission of Ca-37 is: 37Ca -> 37K + e^+ + v + γ This reaction involves the emission of a positron (e^+), resulting in the conversion of a calcium-37 nucleus to a potassium-37 nucleus, along with a neutrino (v) and a gamma ray (γ).
If you are talking about beta+ decay, then the emission of a positron is accompanied with the emission of an electron neutrino.
In positron emission, the positron is produced from the nucleus of an atom when a proton is converted into a neutron and a positively charged positron. This process helps to make the nucleus more stable by decreasing the number of protons.
The balanced equation for positron decay of Mercury-188 ((^{188}{80}\text{Hg})) is: (^{188}{80}\text{Hg} \rightarrow ^{188}{79}\text{Au} + e^+ + \bar{\nu_e}) where (^{188}{79}\text{Au}) is gold-188, (e^+) is a positron, and (\bar{\nu_e}) is an electron antineutrino.
Geological positron emission refers to the emission of positrons (positively charged electrons) from rocks or minerals. This phenomenon can be used in geological studies to understand rock properties, such as porosity and composition, by measuring the rate of positron emission. It is a valuable tool in geophysical exploration and understanding the subsurface structure of the Earth.
In positron emission, a proton in the nucleus is converted into a neutron, leading to the emission of a positron and a neutrino. Therefore, in the case of Mercury-201 undergoing positron emission, the nucleus transforms into a new element with one less proton and one more neutron in its nucleus.
Work backwards. Positron emission means (essentially) a proton decayed into a neutron/positron pair. The mass number remains the same, but the atomic number goes down one to Bromine. Krypton has an isotope that fits this bill.
Silver-31 undergoes positron emission to form palladium-31 by emitting a positron (e+) and turning one of its protons into a neutron. This reaction helps stabilize the nucleus by converting a proton into a neutron.
Positron Emission Tomography
positron-emission tomography(PET Scan)
positron emission tomography (PET)
When an atomic nucleus releases a positron, it has undergone beta plus decay. This nuclear transformation event also will release a neutrino. Use the link below for more information.