answersLogoWhite

0

wavelength : wavelength is the distance from crest of one wave to the crest of next

frequency : the number of waves that passes a given point in one second

energy : the amplitude or intensity of a wave

energy and frequency is directly proportional to each other when energy is high frequency is also high

wavelength and frequency or energy is inversly proportional to each other when wavelength is high frequency or energy is low

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

The energy of a photon is related to its?

The energy of a photon is related to its frequency or wavelength through the equation E=hf, where E is energy, h is Planck's constant, and f is frequency. Alternatively, you can use the equation E=hc/λ, where λ is the wavelength and c is the speed of light.


What occurs as the wavelength of a photon increases?

As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.


The energy of a photon depends on what?

The energy of a photon depends on it's frequency


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.

Related Questions

The energy of a photon is related to its?

The energy of a photon is related to its frequency or wavelength through the equation E=hf, where E is energy, h is Planck's constant, and f is frequency. Alternatively, you can use the equation E=hc/λ, where λ is the wavelength and c is the speed of light.


How are the wavelength and energy of electromagnetic radiation related?

The energy of one photon is given by its frequency X planck's constant Its frequency is given by the speed of light divided by the wavelength.


What occurs as the wavelength of a photon increases?

As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.


The energy of a photon depends on what?

The energy of a photon depends on it's frequency


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


Photon energy and frequency increases as the wavelength of light?

The energy increases as the frequency increases.The frequency decreases as the wavelength increases.So, the energy decreases as the wavelength increases.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


What is the wavelength of a photon whose energy is twice that of a photon with a 580 nm wavelength?

Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.


How are the wavelenght and energy of a photon related?

The energy of a photon is directly proportional to the frequency. Since the frequency is inversely proportional to the wavelength, the energy, too, is inversely proportional to the wavelength.


What is the frequency and energy of a photon with a wavelength of 488.3 nm?

The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.


How are color wavelength and photon energy related?

Color wavelength and photon energy are inversely related. This means that as the wavelength of light decreases and the frequency increases, the energy of the photons also increases. Shorter wavelengths correspond to higher energy photons, such as in the case of ultraviolet light having higher energy than visible light.


When matter absorbs a photon what is the relationship between the energy of the matter before and after the absorpion and the frequency and the wavelength of the radiation absorbed?

When matter absorbs a photon, the energy of the matter increases by an amount equal to the energy of the absorbed photon. The frequency and wavelength of the absorbed radiation depend on the energy of the photon and are inversely related - higher energy photons have higher frequencies and shorter wavelengths.