The specific heat capacity of lead is 0.128 J/g°C. To calculate the heat energy needed to raise the temperature of the lead by 250°C, you would use the formula: Q = m x c x ΔT, where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Plugging in the values, the heat energy needed would be 6400 Joules.
The specific heat capacity of water is 4.18 Joules/gram degrees Celsius. Therefore, it would take 4.18 Joules of energy to raise the temperature of 1 gram of water by 1 degree Celsius.
raise the temperature of the body by 1 Celsius
The specific heat capacity of water is 4.186 J/g°C. Since there are 1000 grams in a kilogram, it would require 20,930 Joules of energy to increase the temperature of a kilogram of water by 5 degrees Celsius.
The amount of heat needed to increase the temperature of a substance by 10 degrees Celsius depends on the specific heat capacity of the substance. This can be calculated using the formula Q mcT, where Q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and T is the change in temperature.
The relevant equation behind this problem is Q=m*c* ΔT Where Q is the energy that must be added to or taken from the system, m is the mass of the object, c is the objects specific heat, and ΔT is the change in temperature in Celsius or Kelvin. Plugging in the given values we get that Q=.015kg * 128J/(kg*C) * 10C=19.2J. Therefore, you need 19.2 joules of heat in order to raise the temperature of a .015kg sample of lead by 10 degrees Celsius.
The specific heat capacity of water is 4.18 Joules/gram degrees Celsius. Therefore, it would take 4.18 Joules of energy to raise the temperature of 1 gram of water by 1 degree Celsius.
True. A calorie is defined as the amount of heat energy needed to raise the temperature of 1 gram of water by 1 degree Celsius.
8.200 J
A fever. Normal body temperature is around 37 degrees Celsius, so 40 degrees Celsius would indicate a fever. It would be a good idea to monitor your symptoms and consult with a healthcare provider if needed.
raise the temperature of the body by 1 Celsius
Specific heat capacity tells you how much stuff energy can store. specific heat capacity is the amount of energy needed to raise the temperature of 1kg of a substance by 1 degrees celsius. water has a specific heat capacity of 4200 J/kg degrees celsius.
The specific heat capacity of water is 4.186 J/g°C. Since there are 1000 grams in a kilogram, it would require 20,930 Joules of energy to increase the temperature of a kilogram of water by 5 degrees Celsius.
To convert 4 kg of ice at 0 degrees Celsius to steam at 100 degrees Celsius, you would need to calculate the heat required to raise the temperature of ice to 0 degrees Celsius, melt the ice to water at 0 degrees Celsius, raise the temperature of water to 100 degrees Celsius, and then convert water to steam at 100 degrees Celsius. The total amount of heat needed can be calculated using the specific heat capacities and latent heats of fusion and vaporization of water.
1 calorie increases 1 gram of water by 1 degree celsius. 4.18 Joules are needed to increase the temperature of 1 gram of water by 1 degree celsius. To reduce the 1 gram of water 1 degree celsius it would have to give off 1 calorie of energy. To calculate the energy multiply the mass in grams of water by 4.18 and by the change in temperature. The energy = 4.18 x m x change in T. The answer is in Joules. If you are using calorie as the unit of energy, replace 4.18 J by 1 C. Note that food is measured in kilocalories (Calories) not metric calories.
The amount of heat needed to increase the temperature of a substance by 10 degrees Celsius depends on the specific heat capacity of the substance. This can be calculated using the formula Q mcT, where Q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and T is the change in temperature.
Approx. 600 - 800 degrees C / 1,100 - 1,500 degrees F
The relevant equation behind this problem is Q=m*c* ΔT Where Q is the energy that must be added to or taken from the system, m is the mass of the object, c is the objects specific heat, and ΔT is the change in temperature in Celsius or Kelvin. Plugging in the given values we get that Q=.015kg * 128J/(kg*C) * 10C=19.2J. Therefore, you need 19.2 joules of heat in order to raise the temperature of a .015kg sample of lead by 10 degrees Celsius.