you need the specific heat of aluminium
c = .9 J/(Kg*K)
140 +273 = 413 K
73 +273 = 346 K
413-346 = 67 k
c*T*m = .9 (J/(Kg*K) * 67 K * 48 Kg = 2894.4 J
The heat energy required can be calculated using the formula: Q = mcΔT, where Q is the heat energy, m is the mass of the aluminum (0.055 kg), c is the specific heat capacity of aluminum (900 J/kg°C), and ΔT is the change in temperature (94.6°C - 22.4°C = 72.2°C). Plugging in the values, we get Q = 0.055 kg * 900 J/kg°C * 72.2°C = 3582.7 J. Hence, 3582.7 Joules of heat energy is needed to raise the temperature of the aluminum sample.
To calculate the energy required to heat water, you would need to know the specific heat capacity of water. The specific heat capacity of water is 4.18 J/g°C. Assuming we are heating the water by 1°C, the energy required would be 46.0g * 4.18J/g°C * 1°C = 192.28 Joules.
The change in temperature is 21 degrees Celsius. To calculate the energy required, we use the formula: Energy = mass * specific heat * change in temperature. Plugging in the values, Energy = 1.3g * 0.131 J/g°C * 21°C = 35.247 Joules. Therefore, 35.247 Joules of energy is required to heat 1.3 grams of gold from 25°C to 46°C.
The specific heat capacity of aluminum is 0.9 J/g°C. To calculate the energy required to raise the temperature of 0.2kg of aluminum by 3 degrees Celsius, you would use the formula: Energy = mass x specific heat capacity x temperature change. Substituting the values into the formula, Energy = 0.2kg x 0.9 J/g°C x 3°C = 0.54 Joules.
The specific heat capacity of aluminum is 0.897 J/g°C. The heat required can be calculated using the formula Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Plugging in the values, you can calculate how much heat is required.
How much heat (in calories) is required to heat a 43 g sample of aluminum from 72 F to 145F
The specific heat capacity of aluminum is 0.897 J/g°C. To calculate the energy required to heat 0.5kg of aluminum by a certain temperature change, you would use the formula: Energy = mass x specific heat capacity x temperature change If you have the temperature change, you can plug the values into the formula to find the total energy in joules.
Specific heat of aluminum is 0.902 J/gC Use this formula. q(Joules) = mass * specific heat * change in temperature q = 106 grams Al * 0.902 J/gC *(121 C = 96 C) = 2390 Joules of heat
334.8 Joules
q( in Joules ) = mass * specific heat * change in temperature [ convert temps--Tf = Tc(1.80) + 32 ] q = (40 g)(0.90 J/gC)(61.1o C - 22.8o C) = 1.4 X 103 Joules =============
The heat energy required can be calculated using the formula: Q = mcΔT, where Q is the heat energy, m is the mass of the aluminum (0.055 kg), c is the specific heat capacity of aluminum (900 J/kg°C), and ΔT is the change in temperature (94.6°C - 22.4°C = 72.2°C). Plugging in the values, we get Q = 0.055 kg * 900 J/kg°C * 72.2°C = 3582.7 J. Hence, 3582.7 Joules of heat energy is needed to raise the temperature of the aluminum sample.
419.1 Joules are required to heat one gram of liquid water from 0.01 degC to 100 deg C. So the answer is 419.1*46 = 19278.6
To calculate the energy required to vaporize 1.5 kg of aluminum, we need to use the latent heat of vaporization for aluminum, which is approximately 10,900 J/kg. The energy required can be calculated using the formula: Energy = mass × latent heat of vaporization. Thus, for 1.5 kg of aluminum: Energy = 1.5 kg × 10,900 J/kg = 16,350 J. Therefore, 16,350 joules of energy is required to vaporize 1.5 kg of aluminum.
To calculate the energy required to heat water, you would need to know the specific heat capacity of water. The specific heat capacity of water is 4.18 J/g°C. Assuming we are heating the water by 1°C, the energy required would be 46.0g * 4.18J/g°C * 1°C = 192.28 Joules.
you need to know the specific heat capacity of aluminum first which can be denoted as 'c'. then using the formula: H=MC(dt) where 'dt; is the change in temperature, M is the mass and H is energy needed, you can thus calculate H. i think the value of 'c' for aluminum is around 0.88Jg/K Replace given values in the equation, you will surely get the answer!
46 calories (or 192, 464 joules) for each Celsius degree.
This heat is 32,48 joules.