If you are talking about the total resistance in a circuit , it depends on the components in the circuit and the location of the cut.
If you are talking about a single wire, the resistance becomes infinite (or close to it) when the wire is cut.
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
To find out which wire has the greatest resistance, you will need to measure the resistance of each wire using a multimeter. Connect the multimeter to each wire separately and record the resistance values displayed. The wire with the highest resistance value will have the greatest resistance.
In general, the longer the wire, the greater the resistance. This is because a longer wire offers more resistance to the flow of electrons compared to a shorter wire. The resistance of a wire is directly proportional to its length.
The resistance of a wire is directly proportional to its length, so doubling the length will also double the resistance. Therefore, doubling the 4 ohm resistance wire will result in a new resistance of 8 ohms.
A thin wire will have higher resistance than a thick wire. This is because resistance is inversely proportional to the cross-sectional area of the wire - a thicker wire has a larger cross-sectional area compared to a thin wire, so it offers less resistance to the flow of current.
The resulting resistance of the parallel combination will be the resistance of the original wire divided by n squared.
10 r
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
To find out which wire has the greatest resistance, you will need to measure the resistance of each wire using a multimeter. Connect the multimeter to each wire separately and record the resistance values displayed. The wire with the highest resistance value will have the greatest resistance.
In general, the longer the wire, the greater the resistance. This is because a longer wire offers more resistance to the flow of electrons compared to a shorter wire. The resistance of a wire is directly proportional to its length.
A thicker wire has less resistance than a thinner wire.
The resistance of a wire is directly proportional to its length, so doubling the length will also double the resistance. Therefore, doubling the 4 ohm resistance wire will result in a new resistance of 8 ohms.
A thin wire will have higher resistance than a thick wire. This is because resistance is inversely proportional to the cross-sectional area of the wire - a thicker wire has a larger cross-sectional area compared to a thin wire, so it offers less resistance to the flow of current.
When a wire is made thicker it's resistance decreases.
it has to heat up so it cuts the foam.
No, the wire with a diameter of 0.01 mm will have higher resistance compared to a wire with a diameter of 0.1 mm. Resistance of a wire is inversely proportional to its cross-sectional area, so a thinner wire will have higher resistance.
The three main factors that affect the resistance in a wire are the material of the wire (different materials have different resistivities), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance).