Ohm's law describes the relationship between voltage, current, and resistance in an electrical circuit. It states that the current flowing through a conductor is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the conductor. This means that if the voltage increases, the current will also increase, but if the resistance increases, the current will decrease.
In microscopic Ohm's law, the relationship between resistance and current is that resistance is directly proportional to the current flowing through a material. This means that as resistance increases, the current flowing through the material decreases, and vice versa.
In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.
Ohm's Law states that the relationship between resistance, current, and voltage is given by the equation V IR, where V is the voltage, I is the current, and R is the resistance. This means that for a given voltage, the current flowing through a circuit is inversely proportional to the resistance - as resistance increases, current decreases, and vice versa.
Ohm's Law: voltage = current * resistance. If resistance is a constant, then voltage is directly proportional to current.
In an electrical circuit, current is the flow of electric charge, voltage is the force that drives the current, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between current (I), voltage (V), and resistance (R) is given by the equation V I R, where voltage equals current multiplied by resistance.
In microscopic Ohm's law, the relationship between resistance and current is that resistance is directly proportional to the current flowing through a material. This means that as resistance increases, the current flowing through the material decreases, and vice versa.
because current is the ratio of voltage and resistance.
In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.
The current drawn from a power source is directly proportional to the voltage of thesource, and inversely proportional to the resistance of the circuit between its terminals.There is no relationship between the current and the physical size of the source.
R = V/I Therfore the resistance is proportional to the voltage and inversely proportional to the current.
Ohm's Law states that the relationship between resistance, current, and voltage is given by the equation V IR, where V is the voltage, I is the current, and R is the resistance. This means that for a given voltage, the current flowing through a circuit is inversely proportional to the resistance - as resistance increases, current decreases, and vice versa.
Ohm's Law: voltage = current * resistance. If resistance is a constant, then voltage is directly proportional to current.
In an electrical circuit, current is the flow of electric charge, voltage is the force that drives the current, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between current (I), voltage (V), and resistance (R) is given by the equation V I R, where voltage equals current multiplied by resistance.
This relationship was discovered by Karl Georg Ohm.
The relationship between power (P), current (i), and resistance (r) in an electrical circuit is described by the formula P i2 r. This means that power is directly proportional to the square of the current and the resistance in the circuit.
Ohm's law gives the relationship between current, voltage, and resistance. The law states that I=V/R, where I is current, V is voltage, and R is resistance. Source: university digital fundamentals
Voltage is the product of current times resistance, V=IR, I is Current and R is resistance. ANSWER: It is a simple ratio of 1:1:1