answersLogoWhite

0

The relationship between the wavelength of a photon and its perceived color is that shorter wavelengths correspond to colors towards the blue end of the spectrum, while longer wavelengths correspond to colors towards the red end of the spectrum. This is known as the visible light spectrum, where different wavelengths of light are perceived as different colors by the human eye.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the wavelength of light and the quantity of energy per photon?

inversely related


What is the relationship between the work function, wavelength, and energy of a photon in the work function equation?

In the work function equation, the work function is the minimum energy needed to remove an electron from a material. The relationship between the work function, wavelength, and energy of a photon is that the energy of a photon is directly proportional to its frequency, which is inversely proportional to its wavelength. This means that a photon with higher energy (shorter wavelength) can provide enough energy to overcome the work function and eject an electron from the material.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


What is the relationship between photon wavelength and the behavior of light in different mediums?

The relationship between photon wavelength and the behavior of light in different mediums is that the wavelength of a photon affects how it interacts with the medium it is passing through. In general, shorter wavelengths of light are more likely to be absorbed or scattered by the medium, while longer wavelengths tend to pass through with less interference. This can result in phenomena such as refraction, reflection, and absorption of light in different mediums.


How does photon energy change with wavelength?

The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.

Related Questions

What is the relationship between the wavelength of light and the quantity of energy per photon?

inversely related


What is the relationship between the work function, wavelength, and energy of a photon in the work function equation?

In the work function equation, the work function is the minimum energy needed to remove an electron from a material. The relationship between the work function, wavelength, and energy of a photon is that the energy of a photon is directly proportional to its frequency, which is inversely proportional to its wavelength. This means that a photon with higher energy (shorter wavelength) can provide enough energy to overcome the work function and eject an electron from the material.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


What is the relationship between photon wavelength and the behavior of light in different mediums?

The relationship between photon wavelength and the behavior of light in different mediums is that the wavelength of a photon affects how it interacts with the medium it is passing through. In general, shorter wavelengths of light are more likely to be absorbed or scattered by the medium, while longer wavelengths tend to pass through with less interference. This can result in phenomena such as refraction, reflection, and absorption of light in different mediums.


How does photon energy change with wavelength?

The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.


What is the wavelength of a photon whose energy is twice that of a photon with a 580 nm wavelength?

Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.


What occurs as the wavelength of a photon increases?

As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.


Transition A produces light with a wavelength of 400 nm Transition B involves twice as much energy as A What wavelenth light does it produce?

Transition B produces light with half the wavelength of Transition A, so the wavelength is 200 nm. This is due to the inverse relationship between energy and wavelength in the electromagnetic spectrum.


What is the relationship between photon frequency and the energy of a photon?

The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.


A photon has an energy of 1.94 1013 J What is the photon's wavelength?

To find the wavelength of the photon, you can use the formula: wavelength = (Planck's constant) / (photon energy). Substituting the values, the wavelength is approximately 1.024 x 10^-7 meters.


When matter absorbs a photon what is the relationship between the energy of the matter before and after the absorpion and the frequency and the wavelength of the radiation absorbed?

When matter absorbs a photon, the energy of the matter increases by an amount equal to the energy of the absorbed photon. The frequency and wavelength of the absorbed radiation depend on the energy of the photon and are inversely related - higher energy photons have higher frequencies and shorter wavelengths.


A photon of wavelength 3000 A is absorbed by a gas and remitted as two photons One of the photons is red 7600 A What is the wavelength of the other photon?

The total energy of a photon with a wavelength of 3000 A is divided into two photons, one red photon with a wavelength of 7600 A, and another photon with a shorter wavelength. To calculate the wavelength of the second photon, you can use the conservation of energy principle, where the sum of the energies of the two new photons is equal to the energy of the original photon. This will give you the wavelength of the other photon.