It raises.
If the buoyant force on an object is greater than the weight of the object, the object will float. This is because the buoyant force will push the object upward with a force greater than the force of gravity pulling it downward.
As an object sinks, the buoyant force acting on it decreases because the volume of water displaced by the object also decreases. This reduction in buoyant force allows the object to continue sinking until it reaches equilibrium with the gravitational force acting on it.
As buoyant force decreases then the body starts sinking down.
If the buoyant force is greater than the weight of an object, it will float on the surface of a fluid. This is known as buoyancy, where the upward force from the fluid exceeds the downward force of gravity on the object.
It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.
If the buoyant force on an object is greater than the weight of the object, the object will float. This is because the buoyant force will push the object upward with a force greater than the force of gravity pulling it downward.
The object sinks.
If the weight of the object is higher than the buoyant force the object SINKS. And the opposite happens if the weight is lower than the buoyant force. If it is equal, the object neither sink nor float, it is neutrally buoyant.
As an object sinks, the buoyant force acting on it decreases because the volume of water displaced by the object also decreases. This reduction in buoyant force allows the object to continue sinking until it reaches equilibrium with the gravitational force acting on it.
i will float
No. The buoyant force on an object is the portion of its weight that appears to vanish when the object is in any fluid (could be either a liquid or a gas). If the object happens to float in a particular fluid, then the buoyant force at that moment is equal to the object's weight. Notice that the buoyant force on an object will be different in different fluids.
As buoyant force decreases then the body starts sinking down.
If the buoyant force is greater than the weight of an object, it will float on the surface of a fluid. This is known as buoyancy, where the upward force from the fluid exceeds the downward force of gravity on the object.
It is stationary, regardless of where it is.
It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.
If the object is floating, then the buoyant force is equal to the object's weight.
If the buoyant force increases, the object in a fluid will experience a greater upward force pushing it towards the surface. This can cause the object to rise higher in the fluid or float more easily. Conversely, if the buoyant force decreases, the object will sink lower in the fluid or have a harder time floating.