The decay of an unstable atom by absorbing a wandering positron into the nucleus, converting a neutron into a proton.
One example is how a radioactive form of iodine, 131I, can use positron capture to become xenon, 131Xe. This is a stable, so the conversion is a big help.
In positron emission, the positron is produced from the nucleus of an atom when a proton is converted into a neutron and a positively charged positron. This process helps to make the nucleus more stable by decreasing the number of protons.
The reason positron emission and electron capture have the same effect on the nucleus of an atom is because the resulting atom undergoes nuclear transformation, and the new element will have one less proton and one more neutron than the precursor element. Both of these nuclear changes are interesting, so let's look a bit more closely. In positron emission (also called beta plus decay), a proton in the nucleus of an atom "changes" into a neutron and a positron is ejected. This results in one less proton in that nucleus (naturally), and the creation of a new element. And because the proton had become a neutron, the nucleus has the same number of nucleons and a similar atomic weight. In electron capture, a nucleus with "too many" protons will actually "pull in" an electron and take it into its nucleus. This electron will "combine" with a proton, and a neutron will result. This will reduce the number of protons in the nucleus, and the creation of a new element -- just like in positron emission. Links to related questions can be found below.
The anti-matter equivalent of an electron is a positron. Positrons have the same mass as electrons but have a positive charge. When a positron and an electron collide, they annihilate each other, releasing energy in the form of gamma rays.
A positron is the antiparticle of the electron. We write the electron as e- as it is negatively charged. We write e+ or β+ for the positron. The latter symbol uses the Greek letter beta as positron emission is one of the two forms of the radioactive decay known as beta decay. Links can be found below.
The charge of a positron is equal in magnitude but opposite in sign to that of an electron. Therefore, the charge of a positron is approximately 1.6 x 10^-19 coulombs.
Positron emission results in the atom losing a proton, transforming the atom into a different element with a lower atomic number. Electron capture involves the atom gaining a proton, resulting in the transformation of the atom into a different element with a higher atomic number. Both processes lead to the formation of a more stable nucleus by adjusting the ratio of protons and neutrons.
Mostly Alpha radiation, but some isotopes also decay by positron emission or Electron capture instead.
positron
In one of them a positron is emitted. In the other an electron is captured. Since positrons are the antiparticles of electrons, it can be difficult in some cases to sort out which of these has actually occurred. Given the preponderance of electrons in normal matter, either way the net effect is going to be that an electron goes missing somewhere, either because it was "captured" or because it was annihilated when the positron ran into it.
A POSITron has a POSITive charge, hence the name. A positron is an anti-electron; since the electron has a negative charge, the positron has a positive charge.A POSITron has a POSITive charge, hence the name. A positron is an anti-electron; since the electron has a negative charge, the positron has a positive charge.A POSITron has a POSITive charge, hence the name. A positron is an anti-electron; since the electron has a negative charge, the positron has a positive charge.A POSITron has a POSITive charge, hence the name. A positron is an anti-electron; since the electron has a negative charge, the positron has a positive charge.
The antiparticle of a positron is an electron. Both the positron and electron have the same mass but opposite charge, with the positron having a positive charge and the electron having a negative charge.
In positron emission, the positron is produced from the nucleus of an atom when a proton is converted into a neutron and a positively charged positron. This process helps to make the nucleus more stable by decreasing the number of protons.
The reason positron emission and electron capture have the same effect on the nucleus of an atom is because the resulting atom undergoes nuclear transformation, and the new element will have one less proton and one more neutron than the precursor element. Both of these nuclear changes are interesting, so let's look a bit more closely. In positron emission (also called beta plus decay), a proton in the nucleus of an atom "changes" into a neutron and a positron is ejected. This results in one less proton in that nucleus (naturally), and the creation of a new element. And because the proton had become a neutron, the nucleus has the same number of nucleons and a similar atomic weight. In electron capture, a nucleus with "too many" protons will actually "pull in" an electron and take it into its nucleus. This electron will "combine" with a proton, and a neutron will result. This will reduce the number of protons in the nucleus, and the creation of a new element -- just like in positron emission. Links to related questions can be found below.
Positron - video game - happened in 1983.
Positron - video game - was created in 1983.
The anti-matter equivalent of an electron is a positron. Positrons have the same mass as electrons but have a positive charge. When a positron and an electron collide, they annihilate each other, releasing energy in the form of gamma rays.
The beta plus decay of mercury (a positron emission event) will deliver the daughter nucleus gold.