It is three times the fundamental frequency. Scroll down to related links and look at "Calculations of Harmonics from Fundamental Frequency".
The fifth harmonic of a frequency is calculated by multiplying the frequency by the harmonic number. So, the fifth harmonic of 77 Hz would be 77 Hz x 5 = 385 Hz.
The second harmonic of a frequency of 440 Hz is 880 Hz. It is exactly twice the frequency of the original sound wave.
The first harmonic of 220 Hz is 220 Hz, the second harmonic is 440 Hz, and the third harmonic is 660 Hz. These harmonics are multiples of the fundamental frequency (220 Hz) that create different pitches when combined.
The fundamental = 1st harmonic is not an overtone!Fundamental frequency = 1st harmonic = 528 Hz.2nd harmonic = 1st overtone = 1056 HzLook at the link: "Calculations of Harmonics from FundamentalFrequency".
The fifth harmonic of a 500 Hz triangular wave would be at a frequency of 2500 Hz. This means that the fifth harmonic would have a frequency that is five times the fundamental frequency of the triangular wave.
The first harmonic, is the fundamental frequency, or 550 Hz. The second harmonic would be twice that, or 1100 Hz. The third would be twice that, or 1650 Hz and so on...
The fifth harmonic of a frequency is calculated by multiplying the frequency by the harmonic number. So, the fifth harmonic of 77 Hz would be 77 Hz x 5 = 385 Hz.
The second harmonic of a frequency of 440 Hz is 880 Hz. It is exactly twice the frequency of the original sound wave.
The first harmonic of 220 Hz is 220 Hz, the second harmonic is 440 Hz, and the third harmonic is 660 Hz. These harmonics are multiples of the fundamental frequency (220 Hz) that create different pitches when combined.
The fundamental = 1st harmonic is not an overtone!Fundamental frequency = 1st harmonic = 528 Hz.2nd harmonic = 1st overtone = 1056 HzLook at the link: "Calculations of Harmonics from FundamentalFrequency".
The fifth harmonic of a 500 Hz triangular wave would be at a frequency of 2500 Hz. This means that the fifth harmonic would have a frequency that is five times the fundamental frequency of the triangular wave.
440 cycles per second. 1 Hz = 1 cycle per second
Second Harmonic
Fundamental frequency = 1st harmonic = 256 Hz 2nd harmonic = 1st overtone = 512 Hz 3rd harmonic = 2nd overtone = 768 Hz. Look at the link: "Calculations of Harmonics from Fundamental Frequency".
The second harmonic will be 2 x the fundamental; the third harmonic is 3 x the fundamental: 500 Hz, and 750Hz.
Harmonics are integer multiples of the fundamental frequency in a sound. For example, if the fundamental frequency is 100 Hz, the first harmonic is 200 Hz (2 x 100 Hz), the second harmonic is 300 Hz (3 x 100 Hz), and so on. Together, they create the overall timbre or tonal quality of the sound.
The article in the related link describes how harmonic imaging is used in ultrasound devices. Basically, you transmit at one frequency, but listen for one of the harmonic frequencies (a whole-number multiple of the original frequency: according to the article, usually the 2nd harmonic, which is double the original frequency - so if the original frequency is 20,000 Hz, then you are listening in the 40,000 Hz range)