That depends on the strength of the electric field, and on the length of time
the electron has been experiencing it.
An electron in an electric field accelerates uniformly.
If an electron moves in the direction of an electric field, it will experience an acceleration in the same direction as the field. This will cause the electron's motion to speed up. If the electron is already moving with a velocity in the direction of the electric field, it will continue to move with a constant velocity.
A free electron at rest in an electric field will experience a force due to the field and will accelerate in the direction of the electric field. The electron will gain kinetic energy and start moving in the direction of the force until it reaches a velocity where the force due to the field is balanced by other forces acting on the electron.
The velocity of an electron in the photoelectric effect is primarily determined by the energy of the incident photon. If the photon energy is greater than the work function of the material, the electron can be ejected with higher velocity. Additionally, factors like the electric field in the material can influence the electron's velocity.
Drift velocity Vd = acceleration x relaxation time So Vd = (E e / m) * t Now Vd / E is defined as the drift velocity per unit electric field and known to be mobility of free electron Hence mobility = (e/m) x t Thus mobility will be different in different material as it depends on relaxation time. e/m is the specific charge of electron which is a constant value equals to 1.759 x 1011
No, the velocity vector of a charged particle is not affected by the electric field if it is perpendicular to the field. The electric force acting on the particle is zero in this case because the force is given by the product of charge and the component of electric field parallel to the velocity vector.
If an electron moves in the direction of an electric field, it will experience an acceleration in the same direction as the field. This will cause the electron's motion to speed up. If the electron is already moving with a velocity in the direction of the electric field, it will continue to move with a constant velocity.
A free electron at rest in an electric field will experience a force due to the field and will accelerate in the direction of the electric field. The electron will gain kinetic energy and start moving in the direction of the force until it reaches a velocity where the force due to the field is balanced by other forces acting on the electron.
Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
The force experienced by a proton in an electric field will be the same as for any other charged particle with the same charge, because the force depends on the charge of the particle and the electric field strength. The charge of a proton is the same as the charge of an electron, just opposite in sign. The mass of the proton being 1836 times greater than the mass of an electron will not affect the force experienced by the proton in the electric field.
The velocity of an electron in the photoelectric effect is primarily determined by the energy of the incident photon. If the photon energy is greater than the work function of the material, the electron can be ejected with higher velocity. Additionally, factors like the electric field in the material can influence the electron's velocity.
Drift velocity Vd = acceleration x relaxation time So Vd = (E e / m) * t Now Vd / E is defined as the drift velocity per unit electric field and known to be mobility of free electron Hence mobility = (e/m) x t Thus mobility will be different in different material as it depends on relaxation time. e/m is the specific charge of electron which is a constant value equals to 1.759 x 1011
The electric field is stronger near the electron and becomes weaker as the distance from the electron increases.
No, the velocity vector of a charged particle is not affected by the electric field if it is perpendicular to the field. The electric force acting on the particle is zero in this case because the force is given by the product of charge and the component of electric field parallel to the velocity vector.
I would say a magnetic field. When an electron enters a magnetic field that is oriented perpendicular to its path of travel it causes the electron to loop in a circle. While the speed stays the same the velocity is constantly changing due to the circular motion. Hence same speed but undergoing an acceleration.
Drift velocity refers to the average velocity of charge carriers, such as electrons, in a conductor when subjected to an electric field. It represents the overall movement of these charge carriers through the material due to the applied voltage, rather than the displacement of individual electrons.
An electron moves in an electric field by experiencing a force that causes it to accelerate in the direction of the field. Factors that influence its motion include the strength of the electric field, the charge of the electron, and any other forces acting on the electron.
The Lorentz force is the force experienced by a charged particle moving in an electric and magnetic field. It is perpendicular to both the velocity of the particle and the magnetic field. The Lorentz force can cause the charged particle to curve in its path or experience a change in velocity.