Because there's a constant downward vertical force on the ball, so it must accelerate
downward.
If you give it an initial upward velocity, the magnitude of that upward velocity must
steadily decrease, and it must eventually dwindle to zero and then become downward
velocity.
The constant downward vertical force on the ball is the force of attraction between
the mass of the ball and the mass of the Earth, caused by gravity.
The vertical component of the initial velocity of the ball thrown horizontally from a window is zero. The ball's initial velocity in the vertical direction is influenced only by the force of gravity, not the horizontal throw.
To have zero speed at the top, you need to throw the projectile with an initial velocity such that it reaches its maximum height at that point. This requires the initial velocity to be exactly equal to the velocity that would be attained due to gravity when the projectile falls from that height. The angle of projection should be such that the vertical component of the initial velocity cancels out the velocity due to gravity.
If you throw ball at an angle above horizontal, you will see the path of the ball looks like an inverted parabola. This is result of the fact that the ball's initial velocity has a horizontal and vertical component. If we neglect the effect of air resistance, the horizontal component is constant. But the vertical component is always decreasing at the rate of 9.8 m/s each second. To illustrate this, let the initial velocity be 49 m/s and the initial angle be 30˚. Horizontal component = 49 * cos 30, Vertical = 49 * sin 30 = 24.5 m/s As the ball rises from the ground to its maximum height, its vertical velocity decreases from 24.5 m/s to 0 m/s. As the ball falls from its maximum height to the ground, its vertical velocity decreases from 0 m/s to -24.5 m/s. Since the distance it rises is equal to the distance it falls, the time that it is rising is equal to the time it is falling. This means the total time is equal to twice the time it is falling. This is the reason that the shape of the ball's path is an inverted parabola. At the maximum height, the ball is moving horizontally. If you do a web search for projectile motion, you will see graphs illustrating this.
A 45-degree throw maximizes the horizontal distance traveled by balancing the vertical and horizontal components of the projectile's velocity. At this angle, the horizontal component is at its maximum, maximizing the range the object can travel before hitting the ground. Any angle higher or lower will result in a shorter distance traveled.
Gravity is the force that gives a thrown ball its vertical movement. As the ball is thrown upwards, gravity acts on it, pulling it back down towards the ground. The vertical movement of the ball is a result of the interaction between the force of the throw and the force of gravity.
The vertical component of the initial velocity of the ball thrown horizontally from a window is zero. The ball's initial velocity in the vertical direction is influenced only by the force of gravity, not the horizontal throw.
No. The entire cooling system is designed to use a specific refrigerant. To change any one component would throw every thing off.
To have zero speed at the top, you need to throw the projectile with an initial velocity such that it reaches its maximum height at that point. This requires the initial velocity to be exactly equal to the velocity that would be attained due to gravity when the projectile falls from that height. The angle of projection should be such that the vertical component of the initial velocity cancels out the velocity due to gravity.
balance
If you throw ball at an angle above horizontal, you will see the path of the ball looks like an inverted parabola. This is result of the fact that the ball's initial velocity has a horizontal and vertical component. If we neglect the effect of air resistance, the horizontal component is constant. But the vertical component is always decreasing at the rate of 9.8 m/s each second. To illustrate this, let the initial velocity be 49 m/s and the initial angle be 30˚. Horizontal component = 49 * cos 30, Vertical = 49 * sin 30 = 24.5 m/s As the ball rises from the ground to its maximum height, its vertical velocity decreases from 24.5 m/s to 0 m/s. As the ball falls from its maximum height to the ground, its vertical velocity decreases from 0 m/s to -24.5 m/s. Since the distance it rises is equal to the distance it falls, the time that it is rising is equal to the time it is falling. This means the total time is equal to twice the time it is falling. This is the reason that the shape of the ball's path is an inverted parabola. At the maximum height, the ball is moving horizontally. If you do a web search for projectile motion, you will see graphs illustrating this.
Throw mudkips at it!
A 45-degree throw maximizes the horizontal distance traveled by balancing the vertical and horizontal components of the projectile's velocity. At this angle, the horizontal component is at its maximum, maximizing the range the object can travel before hitting the ground. Any angle higher or lower will result in a shorter distance traveled.
v2=sqrt(2*g*h) v...starting velocity g...gravity h...height achieved
Gravity is the force that gives a thrown ball its vertical movement. As the ball is thrown upwards, gravity acts on it, pulling it back down towards the ground. The vertical movement of the ball is a result of the interaction between the force of the throw and the force of gravity.
it will change it colour
Up-thrust (throw something into water) Gravity (if you throw something up)
Click on the 'Change-Up' link on this page for tips on throwing a change-up and a circle change-up.