yes because they have the same gravitational potential
False, provided the drop occurs no sooner than the throw, and the ground is flat .
No, objects fall at the same rate regardless of their horizontal velocity. Both objects would hit the ground at the same time if dropped from the same height.
When an object is dropped from a certain height, the time it takes to reach the ground is independent of the height (assuming no air resistance). Therefore, whether you drop the object from three times the initial height or the original height, it will still take the same time (T) to reach the ground.
The ball dropped from 4m height has more kinetic energy just before it hits the ground because it has a higher velocity due to falling from a greater height. Kinetic energy is directly proportional to both mass and the square of velocity, so the ball dropped from 4m height will have more kinetic energy than the one dropped from 2m height.
Still accelerating til it hits earth. ====================================== The height from which she dropped the ball is irrelevant. In any case, the ball was most likely moving at the greatest speed just as it hit the ground. The answer to the question is: zero.
False, provided the drop occurs no sooner than the throw, and the ground is flat .
No, objects fall at the same rate regardless of their horizontal velocity. Both objects would hit the ground at the same time if dropped from the same height.
They should reach the ground together, since their initial vertical speed is the same, namely zero.
When an object is dropped from a certain height, the time it takes to reach the ground is independent of the height (assuming no air resistance). Therefore, whether you drop the object from three times the initial height or the original height, it will still take the same time (T) to reach the ground.
The ball dropped from 4m height has more kinetic energy just before it hits the ground because it has a higher velocity due to falling from a greater height. Kinetic energy is directly proportional to both mass and the square of velocity, so the ball dropped from 4m height will have more kinetic energy than the one dropped from 2m height.
If both raindrops are dropped at the same time from the same height, then no, it does not take any longer, They will hit the ground at the same time because the vertical distance to the ground remains the same.One just travels further away
as done in Galileo's experiment when he dropped a large rock and a feather from a tall tower both hit the ground at the same moment when dropped from the same height.
A cannonball fired horizontally and one dropped from the height of the muzzle simultaneous with the shot will hit the ground at the same instant, provided only that the ground under the muzzle and the ground where the shot lands are at the same elevation, i.e. the shot was not fired off the edge of a cliff or into the side of a mountain. To solve this kind of problems, it often helps to separate the movement, or the speed, into vertical and horizontal components. In this case, the vertical component of the speed is the same.
Still accelerating til it hits earth. ====================================== The height from which she dropped the ball is irrelevant. In any case, the ball was most likely moving at the greatest speed just as it hit the ground. The answer to the question is: zero.
Both the feather and the hammer will hit the ground at the same time when dropped from the same height in a vacuum. This is due to the principle of gravity, which accelerates all objects at the same rate regardless of their mass.
The higher the ball is dropped from, the higher it will bounce back. This is due to potential energy converting to kinetic energy upon impact with the ground, propelling the ball higher when dropped from greater heights. Ultimately, the bounce height depends on factors like gravity, air resistance, and the material of the ball.
Yes