A charged particle moves in a curved path in a magnetic field because the magnetic field exerts a force on the particle perpendicular to both the field direction and the particle's velocity. This force leads to the particle's motion being curved, following a circular or helical trajectory depending on the initial conditions.
When a charged particle moves through a magnetic field, it experiences a force that causes it to change direction. This force is perpendicular to both the particle's velocity and the magnetic field, resulting in the particle moving in a curved path. This phenomenon is known as the Lorentz force and is responsible for the particle's trajectory being deflected in the presence of a magnetic field.
Yes, an alpha particle would be affected by a magnetic field because it has a charge. When moving through a magnetic field, the charged alpha particle will experience a force perpendicular to both its velocity and the magnetic field direction, leading it to move in a curved path.
An alpha particle is positively charged and will experience a force perpendicular to its velocity when moving through a magnetic field. This force will cause the alpha particle to follow a curved path due to the Lorentz force. The direction of the curved path will depend on the charge of the alpha particle and the orientation of the magnetic field.
A magnetic field alters the direction a charged particle is traveling. This is true if the charged particle is moving "across" and not "along" the magnetic lines of force of the field through which it is moving. The particle is said to be deflected when it (the particle) passes through magnetic field lines. The reason for the observed deflection is because a charged particle that is moving creates a magnetic field, and this field will react with the magnetic field through which it is moving. The result will be lateral deflection, and positively charged particles will be deflected one way and negatively charged particles will be deflected the other.
when a charged particle is moving with some velocity it produces some magnetic field. If we place that charged particle in presence of external magnetic field it gets affected by that external field.
When a charged particle moves through a magnetic field, it experiences a force that causes it to change direction. This force is perpendicular to both the particle's velocity and the magnetic field, resulting in the particle moving in a curved path. This phenomenon is known as the Lorentz force and is responsible for the particle's trajectory being deflected in the presence of a magnetic field.
Yes, an alpha particle would be affected by a magnetic field because it has a charge. When moving through a magnetic field, the charged alpha particle will experience a force perpendicular to both its velocity and the magnetic field direction, leading it to move in a curved path.
An alpha particle is positively charged and will experience a force perpendicular to its velocity when moving through a magnetic field. This force will cause the alpha particle to follow a curved path due to the Lorentz force. The direction of the curved path will depend on the charge of the alpha particle and the orientation of the magnetic field.
A magnetic field alters the direction a charged particle is traveling. This is true if the charged particle is moving "across" and not "along" the magnetic lines of force of the field through which it is moving. The particle is said to be deflected when it (the particle) passes through magnetic field lines. The reason for the observed deflection is because a charged particle that is moving creates a magnetic field, and this field will react with the magnetic field through which it is moving. The result will be lateral deflection, and positively charged particles will be deflected one way and negatively charged particles will be deflected the other.
when a charged particle is moving with some velocity it produces some magnetic field. If we place that charged particle in presence of external magnetic field it gets affected by that external field.
The relationship between velocity and the magnetic field equation is described by the Lorentz force equation. This equation shows how a charged particle's velocity interacts with a magnetic field to produce a force on the particle. The force is perpendicular to both the velocity and the magnetic field, causing the particle to move in a curved path.
The magnetic field exerts a force on charged particles, causing them to move in a curved path perpendicular to both the field and their original direction of motion. This is known as the Lorentz force, which is the combination of the electric and magnetic forces acting on a charged particle.
if charge particle is in motion ,then it has magnetic field
Magnetic fields exert a force on moving charged particles. This force is perpendicular to both the velocity of the particle and the magnetic field direction, causing the particles to follow a curved path. The strength of the force depends on the charge of the particle, its velocity, and the strength of the magnetic field.
No, a stationary charge particle cannot be accelerated in a magnetic field. In order to be affected by a magnetic field, the charged particle must be moving.
A charged particle naturally changes direction in a magnetic field. This is because any charged particle produces a magnetic field when it is moving. And if the charged particle is moving through a magnetic field, the two fields (in this case the Earth's and the one created by the moving particle) interact to deflect the particle. The particle will be deflected "to the side" or laterally, and positively charged particles will be deflected in the opposite direction of negatively charged one.
When a charged particle moves perpendicular to a magnetic field, it experiences a magnetic force that acts perpendicular to both the particle's velocity and the magnetic field direction. This force can cause the charged particle to move in a circular path due to the magnetic field's influence on its direction of motion.