to save the static character of conductor in the presence of electric field
If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.
Equipotential lines are perpendicular to the insulator surface because the electric field lines are always perpendicular to the equipotential lines in electrostatic equilibrium. This relationship ensures that there is no component of the electric field tangent to the insulator surface, which would cause the charges to move. As a result, the charges remain at rest on the surface of the insulator.
1. Electric field lines of force originate from the positive charge and terminate at the negative charge. 2. Electric field lines of force can never intersect each other. 3. Electric field lines of force are not present inside the conductor, it is because electric field inside the conductor is always zero. 4. Electric field lines of force are always perpendicular to the surface of conductor. 5. Curved electric field lines are always non-uniform in nature.
The electric field inside a conductor is always zero because the free charges in the conductor rearrange themselves in such a way that they cancel out any external electric field that may be present. This redistribution of charges ensures that the electric field inside the conductor is zero, maintaining electrostatic equilibrium.
The charge density for a conductor is zero in the bulk of the material when it is in electrostatic equilibrium. Any excess charge resides on the surface of the conductor. This is due to the principle that charges in a conductor distribute themselves in such a way that the electric field inside is zero.
If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.If it isn't perpendicular, the charges would be redistributed because there would be force component tangential to the surface. In other words, the charges would move to a new equilibrium position, in which the electric field IS perpendicular to the surface.
Equipotential lines are perpendicular to the insulator surface because the electric field lines are always perpendicular to the equipotential lines in electrostatic equilibrium. This relationship ensures that there is no component of the electric field tangent to the insulator surface, which would cause the charges to move. As a result, the charges remain at rest on the surface of the insulator.
1. Electric field lines of force originate from the positive charge and terminate at the negative charge. 2. Electric field lines of force can never intersect each other. 3. Electric field lines of force are not present inside the conductor, it is because electric field inside the conductor is always zero. 4. Electric field lines of force are always perpendicular to the surface of conductor. 5. Curved electric field lines are always non-uniform in nature.
The electric field inside a conductor is always zero because the free charges in the conductor rearrange themselves in such a way that they cancel out any external electric field that may be present. This redistribution of charges ensures that the electric field inside the conductor is zero, maintaining electrostatic equilibrium.
The charge density for a conductor is zero in the bulk of the material when it is in electrostatic equilibrium. Any excess charge resides on the surface of the conductor. This is due to the principle that charges in a conductor distribute themselves in such a way that the electric field inside is zero.
The normal force is a force that is always perpendicular to the two sliding surfaces. It is the force exerted by a surface to support the weight of an object resting on it.
that's the "normal force"
The normal force, exerted by a surface in contact with an object, always acts perpendicular to the surface and in the direction opposite to gravity to keep the object from falling through the surface.
The diagonals of a square are always perpendicular.
No, the reaction force on a surface can be at an angle, especially if there are other forces acting on the object. The reaction force is always equal in magnitude and opposite in direction to the force applied by the object on the surface.
A rectangle always has perpendicular sides.
A rhombus has 4 equal sides and the diagonals are always perpendicular