Because the whole point of an inductor is to store energy
and then give it all back, without dissipating any of it.
The resistance of an inductor can affect the efficiency of an electrical circuit. Higher inductor resistance can lead to energy loss in the form of heat, reducing the overall efficiency of the circuit. Lower resistance inductors are more efficient as they waste less energy.
A high-resistance bulb typically has a thicker filament compared to a low-resistance bulb. The thicker filament in a high-resistance bulb can withstand the greater heat generated by the increased resistance, resulting in a longer lifespan for the bulb.
The inductive time constant (L/R) is calculated by dividing the inductance of the inductor (L) by the resistance of the circuit (R). It represents the time it takes for the current in the circuit to reach approximately 63.2% of its maximum value during the charging or discharging of the inductor.
Materials with low resistance are called conductors. Conductors allow electricity to flow easily through them due to their low resistance. Metals such as copper and aluminum are examples of good conductors.
Plastic is an insulator, meaning it has high resistance to the flow of electric current compared to conductive materials like metals.
The resistance of an inductor is generally referred to as the series resistance, sometimes noted as RL. Note that resistance is a DC measurement and that an "ideal" textbook inductor has an RL of 0. The reactance of an inductor is an AC measurement which measures the reaction of a component's current flow to an alternating voltage and is frequency dependent and directly proportional to the inductor's inductance, measured in Henrie's. The impedance is most commonly used when talking about inductors or capacitors and is a combination of resistance and reactance.
The resistance of an inductor can affect the efficiency of an electrical circuit. Higher inductor resistance can lead to energy loss in the form of heat, reducing the overall efficiency of the circuit. Lower resistance inductors are more efficient as they waste less energy.
An inductor has two properties. The first is resistance(measured in ohms), which is due to the length, cross-sectional area, and resistivity of the conductor from which it is wound. The second is inductance (measured in henrys), which is due to the length of the inductor, its cross-sectional area, the number of turns, and the permeability of its core.The inductor's resistance limits the value of current flowing through the inductor. The inductor's inductance opposes any change in current.
every inductor has some resistance. In circuit diagram, ideal inductor is shown in series with a resistor(value being equal to coil's resistance) to make analysis easy.
Your question is confusing -is the inductor supplied with a.c. or d.c.?In either case, you can determine the inductance of an inductor by disconnecting it, and measuring its resistance with an ohmmeter. If you want a really accurate value of resistance, you could use a Wheatstone Bridge, instead.
A changing current through an inductor induces a voltage into the inductor, the direction of which always opposes the change in that current.So, in a d.c. circuit, an inductor will oppose (not prevent) any rise or fall in current, although the magnitude of that current will be determined by the resistance of that inductor, not by its inductance.In an a.c. circuit, because the current is continuously changing both in magnitude and in direction, it acts to continuously oppose the current due to its inductive reactance. Inductive reactance is proportional to the inductance of the inductor and the frequency of the supply. The vector sum of the inductive reactance of the inductor and the resistance of the inductor, is termed the impedance of the inductor. Inductive reactance, resistance, and impedance are each measured in ohms.
Yes, an inductor is a short circuit to dc...that's true....IF the inductor is an ideal one, that is, the inductor has no resistance but has inductance only. Anything in real world, as you know, is not ideal. An inductor is usually made of a copper wire. A copper wire has its own resistance. If an inductor coil is thin and long (i.e. many turns), it will provide an appreciable resistance to DC, and will no longer be a short circuit.
A coil of wire acts as an inductor; it will have a very small resistance, and a relatively large inductance. Power factor is effectively the resistance divided by the impedance (made up of resistance and inductance), so the larger the inductance relative to the resistance, the lower the power factor will be.
whose resistance is zero.but it is practically not possible. there is something resistance present in the wire
A: when a coil is saturated there is only resistance of copper
The resulting maximum current is limited by the resistance of the inductor. As the current increases from zero to that maximum value, its expanding magnetic field induces a voltage into the inductor which opposes the rise in that current. So, instead of reaching its maximum value instantaneously, it takes some time -determined by the equation:time to maximum current = 5 L / R (seconds)where L = inductance of inductor in henrys, and R = resistance of inductor in ohms.
Yes, an inductor works with direct current. It is called an electromagnet. Of course, a practical electromagnet has series resistance, otherwise the current in the inductor would increase to the limit of the current/voltage source.