The XLAT
instruction is used to translate a byte in the AL
register using a lookup table pointed to by the BX
register (or SI
in some modes). However, XLAT
itself does not perform arithmetic operations like squaring. To find the square of a byte in AL
, you can simply multiply it by itself using the MUL
instruction. Here’s a code segment for that:
mov bl, al ; Store original value in BL
mul bl ; AL = AL * BL (square of AL)
This code multiplies the value in AL
by itself, storing the result back in AL
.
Instruction pointer (IP) is used to hold the offset of the next instruction to be fetched for BIU available from Code Segment whose base address is held in CS segment base register..
There is insufficient information in the question to properly answer it. Which Motorola microprocessor are you talking about? Please restate the question.
stack segment register
There are four segment registers in the 8086/8088, Code Segment (CS), Stack Segment (SS), Data Segment (DS), and Extra Segment (ES). As a result, there are four segments that can be directly addressed at a particular time, i.e. without an extra instruction to reload a segment register.
In the 8086/8088 microprocessor, the code segment is used to fetch the opcode and any additional instruction bytes that might be part of the instruction, while the data segment is used to fetch and/or store any operand bytes that the instruction requires to be manipulated.This is in the case of no segment override prefix.
Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated during far jump, far call and far return instructions. Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions. Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated during far jump, far call and far return instructions. Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions.
The physical address in the 8086/8088 is calculated by adding the effective address with the contents of one of the segment registers left shifted by 4 bit positions. This results in a 20 bit address bus. As an example, if the CS register contains 1234H, and the IP register contains 5678H, then the next instruction is fetched from physical address 179B8H, which is 1234H times 16 (12340H) plus 5678H. The segment register used is selected by context, or by using a segment override prefix, however, the code segment register (CS) can not be overidden during instruction fetch, nor can the stack segment register (SS) be overidden during stack pushes and pops.
there are 14 registers in 8088 micro processor. All the 14 are 16 bit registers. They are4 segment registers viz - code segment register, stack segment register, data segment register, extra segment register.general registers are - accumulator register i.e. AX, base register i.e. BX, count register i.e. CX, data register i.e. DX and stack pointer (SP), base pointer (BP).index registers are - source index(SI), destination index(DI),and the other registers are instruction pointer and flags register.
In the 8086 microprocessor, an intra-segment jump refers to a jump instruction that occurs within the same segment of memory, allowing the program to branch to a different address within that segment. Conversely, an inter-segment jump involves jumping to a different segment, which requires specifying both the segment and offset addresses to access the target location. Intra-segment jumps are typically faster since they do not require segment register changes, while inter-segment jumps can introduce additional overhead due to the need for segment management.
The segment register in the 8086/8088 provide a base address for any memory access. There are four segment registers, CS - Code Segment, DS - Data Segment, SS - Stack Segment, and ES - Extra Segment. Each in used in the context of a particular instruction and contains the base address of the memory segment divided by 16. This allows the processor to access up to 1 MB of memory, though only in segments of 64 KB at a time.
Physical address in the 8086/8088 is {Selected Segment Register} * 16 + {Effective Offset Address}. It is a 20-bit address .
program counter holds the address of the next instruction.