4
9,to implement a half adder 5 nand gates and for a full adder,another xor gate is required consisting of 4 nand gates. thus a total of 9 nand gates are required for a full adder.
Check this link http://www.dumpt.com/img/viewer.php?file=bd6b3mqsa66fhr6c76l1.bmp
A&B = ((A&B)')' So two, it would go a - | ==NAND--=NAND-- b - | By using two NAND gates back-to-back, you can create a normal AND gate.
4 as a minimum, but you can use more if you really want to.
two nand gates
by multiplying two NAND gates
12 NOR gates are required to implement full adder
There are 2 types of universal gates in physics: the NAND gate (combinations of NAND gates can produce any logic function) and the NOR gate (combinations of NOR gates can also produce any logic function). These gates are considered universal because they can be used to implement any logical function.
As such an OR gate should do the job...but if the question is of using gates other than the simple OR, it should be a combo of NOR and NOT gates; where-in, the NOT gate comes after the NOR gate. Factfully speaking: The output of a NOR gate when fed to a NOT gate shall give you an OR gate. cheers :) Anish Murthy Airpula, RF Design Engineer (F.A.E) Ceramic & Microwave Products Group, Dover Corporation Inc, United States of America
ans. 3 nand gates resoon :- OR GATE :- x+y NAND GATE :- x'+y' LOGIC :-so the logic is is we apply NAND to the inputs x' and y' instead of xand y we would get x+y DESIGN PROCEDURE 1. for inverting the input x and y can be done by NAND gates , 2. take a NAND gate and pass both x in both the inputs it means x NAND x gives you x' 3. follow similar procedure for inverting y 4. and then all the outputs of those NAND gates as the inputs of another NAND gate
A universal gate is a logic gate that can be used to implement any logic function. The NAND gate and NOR gate are examples of universal gates because any other logic gate can be constructed using only NAND or only NOR gates.