Given the constraints of the passband channel, the most appropriate modulation scheme to use would be Quadrature Amplitude Modulation (QAM). This modulation scheme is capable of achieving high data throughput, which is necessary for the targeted bandwidth efficiency of 4 bits/sec/Hz.
The symbol rate (SR) should be chosen so that it is within the given passband channel, while also allowing for a high enough bit rate to reach the targeted efficiency. To do this, the SR should be chosen to be in the range of 1Khz to 3Khz, depending on the specific requirements of the system.
The bit rate (BR) should be chosen based on the symbol rate and the targeted bandwidth efficiency. For a given symbol rate, the bit rate can be calculated by multiplying the symbol rate by the number of bits per symbol. For example, if the symbol rate is 1Khz, then the bit rate can be calculated as 1Khz x 4 bits/symbol = 4Kbps.
The raised-cosine roll-off factor should be chosen based on the specific requirements of the system. Generally, a roll-off factor of 0.25 is a good choice and will provide good performance.
The carrier frequency should be chosen based on the specific requirements of the system. Generally, a carrier frequency in the range of 1Khz to 3Khz is a good choice.
I think it is Frequency Modulation with Phase modulation which it the most bandwidth efficient
ssb modulation scheme
Suppressed carrier single sideband amplitude modulation - SCSSBAM.
if we need simple transmitter and receiver, if we need low bandwidth
depends on type of modulation and other variables
AM (Amplitude Modulation) has a smaller bandwidth and can have more stations available in any frequency range. AM is cheaper and can be transmitted over long distances. FM (Frequency Modulation) signals are prone to interference due to physical obstructions. The better sound quality is due to a much higher bandwidth, using FM.
Vestigial type modulation (VSB) is achieved by modifying amplitude modulation (AM) to improve the efficiency of bandwidth usage, particularly in digital television broadcasting. It involves filtering the transmitted signal to eliminate one sideband and part of the carrier, which reduces bandwidth while preserving the ability to recover the original signal at the receiver. This technique helps in minimizing interference and allows for more efficient spectrum utilization. VSB is commonly used in ATSC (Advanced Television Systems Committee) standards for digital TV transmission.
In Amplitude Modulation (AM), specifically in the case of Double Sideband Suppressed Carrier (DSB-SC) or Full Carrier (DSB-FC) AM, the required bandwidth is twice the bandwidth of the modulating signal. If the modulating signal has a bandwidth of B Hz, the bandwidth required for AM would be 2B Hz. This is because both the upper and lower sidebands of the carrier wave are utilized in the modulation process, each consuming bandwidth equivalent to the original signal.
Quadrature Amplitude Modulation (QAM) is often considered superior to other modulation schemes due to its ability to transmit multiple bits of data per symbol by combining amplitude and phase variations. This efficiency allows for higher data rates within the same bandwidth compared to traditional methods like Amplitude Modulation (AM) or Frequency Modulation (FM). Additionally, QAM can effectively combat noise and interference, making it suitable for high-capacity communication systems, such as digital television and broadband internet. Overall, its versatility and efficiency make QAM a preferred choice in modern digital communication.
The bandwidth of the transmission media The modulation encoding used
A carrier is used to make the wavelength smaller for practical transmission and to permit multiplexing. The spectrum is used to measure bandwidth (the range of frequencies) and the efficiency (the power in the side-bands compared to the total power) Bandwidth can be predicted using BW = 2 fm where fm = the maximum modulating frequency Efficiency depends only on the modulating index, m (the fraction of the carrier you modulate by) AM is limited to 33% efficiency because the modulation index cannot be increased to > 1.0 without introducing distortion in the receiver.
Multi-carrier modulation (MCM) is a method of transmitting data by splitting it into several components, and sending each of these components over separate carrier signals. The individual carriers have narrow bandwidth , but the composite signal can have broad bandwidth.