answersLogoWhite

0


Best Answer

No there is a range of resting potentials. For example retinal ganglion cells have a resting potential of -65 mV while the endocochlear potential is +80 mV.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Do all cells have a resting potential of -70mV?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Is a cells resting state -50 to about 50 millivolts?

In their resting state, all body cells exhibit a resting membrane potential ranging from -50 to about +50 millivolts. FALSE


The electrical charge of an inactive neuron is known as?

Potential, ok well we all know it's a potential, but which one? Is it Action Potential, Synaptic Potential or Membrane Potential. Just saying Potential isn't saying much?


What happens to the membrane potential of a neuron during an action potential?

1. A neurotransmitter (NT) released from another cell (or in some cases the same cell) will diffuse across the synaptic cleft and bind to a recipient receptor. 2. The receptor will then change it's permeability to certain ions in the extracellular fluid, allowing the ions to flux into the cell (the exception here would be pharmacological agents designed to occupy the receptor without leading to a conformation change) 3. The influx of ions will alter the membrane potential. If the NT is inhibitory (e.g. GABA), then the GABA receptor that it binds to will increase its permeability to negatively charged ions (chloride) and thereby lower the local resting membrane potential (which is normally -70mV). If the NT is excitatory (e.g. glutamate) then the glutamte receptor (AMPA or NMDA) will increase its permeability to positively charged ions (sodium) which will increase the resting membrane potential from -70mV. 4. If enough NTs bind then the local membrane potentials will summate - and in the case of excitatory NTs - cause the membrane potential to change (by opening of voltage-gated ion channels) to around 0-20mV leading to an action potential 5. The action potential, which is generated in an 'all or none fashion' at the axon hillock, will then propagate all the way down the axon to the axon terminal causing the release of stored NTs (although not all NTs are stored - e.g. NOS) 6. NTs released from the presynaptic cell will then diffuse across the synaptic cleft and bind their postsynaptic receptor (normally located on a dendrite, although also located on the cell body themselves) and the whole process starts all over again


How is resting potential achieved?

The resting membrane potential difference between the inside and the outside of the cell is the result of selective permeability of the cell membrane and the active transport of ions into and out of the cell. Almost all cells have a potential difference, but some cells, neuron and heart muscle, also have voltage and chemically gated channels that allow for transient deviations from the resting potential.


What is the purpose of the action potential?

An action potential can also be called a nerve impulse which is known to be stimulated by an external stimuli or upon internal excitation.This action potential travels through a neuron and involves charged ions (the key ones are sodium ions and potassium ions) that cross the membrane barrier of the neuron.In the longitudinal section of the axon of the neuron (the part that carries the signal which may be covered in Schwann cells to protect the it) the action potential cycle occurs.There are four main stages: The Resting Membrane Potential, Depolarization, Repolarization, and the Refractory Period.In the Resting Membrane Potential Stage there is an active force that maintains the resting membrane potential at -70 mV. This active force is the Sodium Potassium Pump where three sodium ions leave the nerve cell and two potassium ions enter. With the Sodium Potassium Pump, it transports these ions actively and so ATP is required. In addition to the Sodium Potassium Pump, there are voltage-sensitive potassium slow leak channels that are involved with passive transport and there are also voltage sensitive sodium gates that are passive sodium channels. They are normally impermeable to sodium however it can't pass through unless there is an electrical current to open it.In the Depolarization Stage, an external stimuli occurs altering the tertiary structure of sodium gates allowing the nerve cell membrane to become more permeable to sodium than potassium. Therefore, sodium floods in passively making the extracellular fluid (ECF) more negative and the intracellular fluid (ICF). Now the voltage inside the cell is +50 mV compared to the previous stage where it was -70 mV.Once the cell has reached a voltage of +50 mV, sodium gates close and so the inflow of sodium ions into the cell are discontinued. Because of the altered concentration gradient of ions in the Depolarization Stage, it causes the potassium channels to alter their shape. As a result, there is an inflow of potassium ions outside of the cell and the inside becomes negative again. This stage is known as the Repolarization Stage. This prevents the signal from going backwards. The voltage inside the cell is now at -80 mV.In the last stage, Refractory Period, the Sodium Potassium Pump actively re-establishes the resting membrane potential. It takes time to reestablish the sodium and potassium concentrations to -70 mV.Please note that depolarization cannot occur until the resting membrane potential is reached (-70 mV).As an aside, the action potential follows the All or None Principle. This means that larger signals do not create larger action potentials. A neuron must always reach -70 mV before the signal is passed along a neuron. Therefore, the action potential will occur fully or not at all.The action potential is an electrical event occurring when a stimulus of sufficient intensity is applied to a neuron or muscle cell, allowing sodium to move into the cell and reverse the polarity.Normally neurones (neurons, or nerve cells) maintain a resting potential of -70mV across their membrane by the active pumping of 3Na+ ions out of the cell for every 2 K+ ions pumped into the cell by a Na+/K+ pump. When the neurone is stimulated, sodium ion channels open in the membrane and sodium ions flood in to the cell down an electrochemical gradient by diffusion, increasing the potential of the cell to +40mV. This is called depolarisation. At this point the sodium channels close, and potassium ion channels open. Potassium ions flood out of the cell down their electrochemical gradient, decreasing the cell's membrane potential. This is called repolarisation. There is a slight overshoot where too many potassium ions diffuse out of the cell, and there is hyperpolarisation where the cell's membrane potential falls below its normal -70mV, but this is corrected and the resting potential is once again restored. This is the sequence of events that makes up a single action potential. Action potentials are transmitted by saltatory conduction in the neurone, and impulses jump from node to node along the axon of the neurone.

Related questions

Does all body cells exhibit a resting membrane potential in their resting state therefore making all cells polarized?

In resting state, all body cells exhibit a resting membrane potential that typically ranges from -50 to -100 millivolts, depending on cell type. For this reason , all cells are said to be polarized.


Is a cells resting state -50 to about 50 millivolts?

In their resting state, all body cells exhibit a resting membrane potential ranging from -50 to about +50 millivolts. FALSE


Major determinant of the resting potential of all cells is?

Resting membrane potential is determined by K+ concentration gradient and cell's resting permeability to K+, N+, and Cl-.Gated channels control ion permeability. Three types of gated channels are mechanically gated, chemical gated, voltage gated. Threshold voltage varies from one channel type to another.The Goldmann- Hodgkins-Katz Equation predicts membrane potential using multiple ionsThe resting potentialBecause the plasma membrane is highly permeable to potassium ions, the resting potential is fairly close to -90mV, the equilibrium potential for K+Although the electrochemical gradient for sodium ions is very large, the membrane's permeability to these ions is very low. Consequently, Na+ has only a small effect on the normal resting potential, making it just slightly less negative than it would be otherwise.The sodium-potassium exchange pump ejects 3 Na+ ions for every 2 K+ ions that it brings into the cell. It thus serves to stabilize the resting potential when the ratio of Na+ entry to K+ loss through passive channels is 3:2.At the normal resting potential, these passive and active mechanisms are in balance. The resting potential varies widely with the type of cell. A typical neuron has a resting potential of approx -70mV


In the absence of stimuli all cells in the body maintain a potential difference across the semipermeable membrane in which the inside of the cell is negatively charged in comparison to the outside?

resting membrane potential


The electrical charge of an inactive neuron is known as?

Potential, ok well we all know it's a potential, but which one? Is it Action Potential, Synaptic Potential or Membrane Potential. Just saying Potential isn't saying much?


Is equilibrium potential the same as resting potential?

The equilibrium potential refers to the electrochemical potential at equilibrium of a particular ion, as calculated by the Nernst equation. The resting potential refers to the weighted average based upon membrane permeabilities of all the equilibrium potentials of the various ions in a given cell, as calculated by the Goldman equation.


What effect does potassium have on the resting potential of a cardiac cell?

Hyperkalemia is an increase in extracellular K. Driving force of an ion depends on two factors, voltage and concentration gradient. For K voltage gradient is pushing K into the cell but the concentration gradient is driving K out of the cell. However, the total driving force for K is out of the cell because the concentration gradient is that strong. When there is an increase in K on the outside, the driving force for K decreases.The equilibrium potential for K is -95mV. This means if K was freely permeable to the cell's membrane, it would reach equilibrium at -95mV. Another way to look at this is that efflux of K is the same as influx of K and the cell's new resting membrane potential would increase from a normal value of -70mV to -95mV. Note that I said it would increase even though the value became more negative. This is because the change in membrane potential has increased.Since the driving force of K has decreased, the equilibrium potential has also decreased. From a value of -95mV it is decreased to let's just say -80mV. Since a normal resting membrane potential is regularly -70mV, the decrease in equilibrium potential of K has decreased this resting membrane potential to say -60mV now. This is a depolarization of the cell.If this process happens quickly, it will depolarize the cell to the threshold value and you will have an action potential. However, if the hyperkalemia is severe, the cell will stay depolarized because the K equilibrium has decreased to a point where the cell cannot hyperpolarize back to threshold or resting membrane potential.If this process happens slowly, the inactivation gates of the sodium voltage-gated channels will automatically shut and the cell cannot depolarize even if it reaches threshold values. It must hyperpolarize back to resting membrane potential and the inactivation gates of the sodium voltage-gated channel will reopen.


Why will most of the cells you view be in interphase?

Most of the cells you view be in interphase at all times. This is because that is the normal resting phase that cells will assume most of the time.


How is resting potential achieved?

The resting membrane potential difference between the inside and the outside of the cell is the result of selective permeability of the cell membrane and the active transport of ions into and out of the cell. Almost all cells have a potential difference, but some cells, neuron and heart muscle, also have voltage and chemically gated channels that allow for transient deviations from the resting potential.


What happens to the membrane potential of a neuron during an action potential?

1. A neurotransmitter (NT) released from another cell (or in some cases the same cell) will diffuse across the synaptic cleft and bind to a recipient receptor. 2. The receptor will then change it's permeability to certain ions in the extracellular fluid, allowing the ions to flux into the cell (the exception here would be pharmacological agents designed to occupy the receptor without leading to a conformation change) 3. The influx of ions will alter the membrane potential. If the NT is inhibitory (e.g. GABA), then the GABA receptor that it binds to will increase its permeability to negatively charged ions (chloride) and thereby lower the local resting membrane potential (which is normally -70mV). If the NT is excitatory (e.g. glutamate) then the glutamte receptor (AMPA or NMDA) will increase its permeability to positively charged ions (sodium) which will increase the resting membrane potential from -70mV. 4. If enough NTs bind then the local membrane potentials will summate - and in the case of excitatory NTs - cause the membrane potential to change (by opening of voltage-gated ion channels) to around 0-20mV leading to an action potential 5. The action potential, which is generated in an 'all or none fashion' at the axon hillock, will then propagate all the way down the axon to the axon terminal causing the release of stored NTs (although not all NTs are stored - e.g. NOS) 6. NTs released from the presynaptic cell will then diffuse across the synaptic cleft and bind their postsynaptic receptor (normally located on a dendrite, although also located on the cell body themselves) and the whole process starts all over again


How are human smooth muscle cells similar to human nerve cells?

All muscle cells and nerve cells use an action potential and also obey the all-or-none law


When does a neuron exhibit resting potential?

The human nervous system consists of billions of nerve cells (or neurons)plus supporting (neuroglial) cells. Neurons are able to respond to stimuli (such as touch, sound, light, and so on), conduct impulses, and communicate with each other (and with other types of cells like muscle cells). Neurons can respond to stimuli and conduct impulses because a membrane potential is established across the cell membrane. In other words, there is an unequal distribution of ions (charged atoms) on the two sides of a nerve cell membrane. The membranes of all nerve cells have a potential difference across them, with the cell interior negative with respect to the exterior (a). In neurons, stimuli can alter this potential difference by opening sodium channels in the membrane. For example, neurotransmitters interact specifically with sodium channels (or gates). So sodium ions flow into the cell, reducing the voltage across the membrane. Once the potential difference reaches a threshold voltage, the reduced voltage causes hundreds of sodium gates in that region of the membrane to open briefly. Sodium ions flood into the cell, completely depolarizing the membrane (b). This opens more voltage-gated ion channels in the adjacent membrane, and so a wave of depolarization courses along the cell - the action potential. As the action potential nears its peak, the sodium gates close, and potassium gates open, allowing ions to flow out of the cell to restore the normal potential of the membrane. Membranes are polarized or, in other words, exhibit a RESTING MEMBRANE POTENTIAL. This means that there is an unequal distribution of ions (atoms with a positive or negative charge) on the two sides of the nerve cell membrane. This POTENTIAL generally measures about 70 millivolts (with the INSIDE of the membrane negative with respect to the outside). So, the RESTING MEMBRANE POTENTIAL is expressed as -70 mV, and the minus means that the inside is negative relative to (or compared to) the outside. It is called a RESTING potential because it occurs when a membrane is not being stimulated or conducting impulses (in other words, it's resting). Source : Internet.