answersLogoWhite

0


Best Answer

the weight of the star doesn't matter.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does a heavy or light star produce heavier elements?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Why has only the most massive stars are important contributors in enriching the galaxy with heavy elements?

To "enrich the Universe", the heavy elements would need to get back out of the star - and into outer space, where it can eventually become part of new star systems. This "getting out" happens mainly in supernova explosions - i.e., in the case of very massive stars. Also, stars with very low mass mainly convert hydrogen into helium - they didn't have time yet, given the current age of the Universe, to advance to a later stage, where they convert helium into heavier elements - and the stars with the very lowest masses never will, since they won't get hot enough.


What nuclear process occurred when light elements combine to form heavier elements?

Nuclear Fusion


Is tin heavier or titanium?

No Titanium is very light. Glasses and lamps are made out of Titanium and thus it is not very heavy.


When two nuclei of light elements are forced together at extremely high temperature what happens?

They form heavier elements


Can the sun produce elements heavier than oxygen?

The heaviest element that our Sun produces is probably silicon; the core temperature and pressure would need to be MUCH higher to produce heavier elements. The heaviest element that can be produced in ANY star is iron.The reason for this is something called the "packing fraction curve". As light elements are fused into heavier elements, they release energy; this is how the Sun and other stars work, by fusing hydrogen into helium. Toward the end of a star's life, the temperature and pressure increase enough to fuse helium into carbon, and then carbon into heavier elements, but each stage releases less and less energy. Finally, when elements fuse into iron, you can get no more energy out. To fuse iron into heavier things, or anything into elements heavier than iron, you must put energy IN. When a star begins fusing iron into heavy elements, it suddenly stops producing energy to support the star against the tremendous gravity, but instead starts sucking energy OUT of the core of the star to power fusion!This loss of energy from the core of the star causes a sudden and catastrophic implosion as the core of the star collapses the core into a black hole or neutron star, and the outer layers of the star are compressed and expelled in a shock wave that creates gigatons of heavy elements and throws the remainder of the star's mass into space; a supernova explosion.So, nothing heavier than iron can be produced in a normal star; heavier elements are only created in supernovas.

Related questions

Why has only the most massive stars are important contributors in enriching the galaxy with heavy elements?

To "enrich the Universe", the heavy elements would need to get back out of the star - and into outer space, where it can eventually become part of new star systems. This "getting out" happens mainly in supernova explosions - i.e., in the case of very massive stars. Also, stars with very low mass mainly convert hydrogen into helium - they didn't have time yet, given the current age of the Universe, to advance to a later stage, where they convert helium into heavier elements - and the stars with the very lowest masses never will, since they won't get hot enough.


What do Hydrogen bombs and stars both produce energy with nuclear?

The term is nuclear fusion, where light elements (usually hydrogen) fuse to form heavier elements.


Where in the universe are heavy elements made?

Light elements are made in light weight stars via stellar nucleosynthesis. Elements as heavy as iron form in the cores of massive stars. Anything heavier than iron requires a supernova--the collapse and explosion of a super massive star.


How did nuclear fussion in stars help create the elements?

Light elements combined to form the heavier elements.


What nuclear process occurred when light elements combine to form heavier elements?

Nuclear Fusion


Is tin heavier or titanium?

No Titanium is very light. Glasses and lamps are made out of Titanium and thus it is not very heavy.


Who created the theory of light and heavy elements?

Aristotle


When two nuclei of light elements are forced together at extremely high temperature what happens?

They form heavier elements


How does stars light up?

Inside stars atoms are fused together to form heavier elements in a process called nuclear fusion. Our very own Sun is our closest star. Our Sun fuses hydrogen atoms together to form helium. Our Sun will eventually produce heavier elements when it reaches a certain age, and will in fact create even heavier elements as it dies! This process of fusion releases energy in the form of heat and light. The light travels from the star to your eye and you can see it. Interestingly, because light takes time to travel this distance, when you look at stars you are actually seeing them as they were in the past.


Why does your sun have 2 percent heavier elements and from where do they come?

I think it's our Sun which gets heavier elements from fusion of hydrogen and other light elements.Edit: Our Sun does create helium from hydrogen by fusion, but that's all. The reason it has heavier elements is that these come from the nebula that formed the Sun. The heavier elements are thought to have come from stars that exploded as "supernovas", a long time ago.


Why do elements produce light?

Some elements produce light because of a change in energy state levels. The color of the light is determined by the difference in energy between the excited state and the ground state.


Can the sun produce elements heavier than oxygen?

The heaviest element that our Sun produces is probably silicon; the core temperature and pressure would need to be MUCH higher to produce heavier elements. The heaviest element that can be produced in ANY star is iron.The reason for this is something called the "packing fraction curve". As light elements are fused into heavier elements, they release energy; this is how the Sun and other stars work, by fusing hydrogen into helium. Toward the end of a star's life, the temperature and pressure increase enough to fuse helium into carbon, and then carbon into heavier elements, but each stage releases less and less energy. Finally, when elements fuse into iron, you can get no more energy out. To fuse iron into heavier things, or anything into elements heavier than iron, you must put energy IN. When a star begins fusing iron into heavy elements, it suddenly stops producing energy to support the star against the tremendous gravity, but instead starts sucking energy OUT of the core of the star to power fusion!This loss of energy from the core of the star causes a sudden and catastrophic implosion as the core of the star collapses the core into a black hole or neutron star, and the outer layers of the star are compressed and expelled in a shock wave that creates gigatons of heavy elements and throws the remainder of the star's mass into space; a supernova explosion.So, nothing heavier than iron can be produced in a normal star; heavier elements are only created in supernovas.