answersLogoWhite

0


Best Answer

K(bulk modulus of elasticity)=-{[Pressure x volume]/change in volume}

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Formula for bulk modulus of volume of elasticity?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Is the bulk modulus of elasticity increases with pressure?

Yes, the bulk modulus of elasticity increases with pressure. The bulk modulus measures the resistance of a material to changes in volume under applied pressure. As pressure increases, the material becomes less compressible and therefore the bulk modulus increases.


What is the types of modulus of elasticity?

1. Young's modulus of elasticity, E, also called elastic modulus in tension 2. Flexural modulus, usually the same as the elastic modulus for uniform isotropic materials 3. Shear modulus, also known as modulus of rigidity, G ; G = E/2/(1 + u) for isotropic materials, where u = poisson ratio 4. Dynamic modulus 5. Storage modulus 6. Bulk modulus The first three are most commonly used; the last three are for more specialized use


What is the modulus of elasticity of water?

Pure de-aired water has a bulk modulus equal to approximately 2.2 GPa. There is a common misconception that fluids are totally incompressible, however as can be seen from the above this is not true (if it were, the bulk modulus would be infinitely high). It is reasonable to state that water is highly resistant to compression however. It should also be noted that the presence of dissolved gasses in water can significantly reduce this value so consider carefully the application or system being modelled before choosing an elastic modulus for water or any other fluid.


Relationship between bulk modulus and poissons ratio?

K=E/(3*(1-2v)) K: Bulk modulus E: young modulus v: poison's ratio on the other hand: delta V/V=(1-2v)*delta L/L relative change in Volume equals to: (1-2v) * relative change in length.


Modulus of rigidity of rubber?

The modulus of elasticity , E, relates tensile stress to tensile strain The modulus of rigidity, G, relates shear stress to shear strain The bulk modulus, K, relates compressive stress to volume strain The three are related using u, poisson ratio of material, that varies generally from 0 to 0.5 E = 9K/ (1 + 3K/G) G = E/2(1+u) G = 3(1-2u)K/2(1+u)

Related questions

What are the different types of modulus elasticity?

there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on


Is the bulk modulus of elasticity increases with pressure?

Yes, the bulk modulus of elasticity increases with pressure. The bulk modulus measures the resistance of a material to changes in volume under applied pressure. As pressure increases, the material becomes less compressible and therefore the bulk modulus increases.


Solids liquids and gases. which ones are hard to deform?

When we talk about deformatation, we are referring to two properties, namely Elasticity and Plasticity. These properties are measured using constants known as " Moduli of Elasticity". There are 4 such moduli: Young's Modulus Axial Modulus Rigidity Modulus Bulk Modulus The larger the value of the Bulk Modulus, the harder it is to compress the material.


How do you calculate the velocity of the sound?

sound travels at 1126 ft/sec in airto calc in other mediumswhereK is a coefficient of stiffness, the bulk modulus (or the modulus of bulk elasticity for gases), is the density


What is the types of modulus of elasticity?

1. Young's modulus of elasticity, E, also called elastic modulus in tension 2. Flexural modulus, usually the same as the elastic modulus for uniform isotropic materials 3. Shear modulus, also known as modulus of rigidity, G ; G = E/2/(1 + u) for isotropic materials, where u = poisson ratio 4. Dynamic modulus 5. Storage modulus 6. Bulk modulus The first three are most commonly used; the last three are for more specialized use


What is lame constants?

See Gabriel Lame (1795-1870). Also see Stress-Strain Relationships, Bulk Modulus, and Theory of Elasticity.


Bulk modulus of sulfuric acid?

The bulk modulus of a fluid is the measure of its compressibility. In SI units, the bulk modulus of sulfuric acid is 3.0 Newtons per square meter.


What is the modulus of elasticity of water?

Pure de-aired water has a bulk modulus equal to approximately 2.2 GPa. There is a common misconception that fluids are totally incompressible, however as can be seen from the above this is not true (if it were, the bulk modulus would be infinitely high). It is reasonable to state that water is highly resistant to compression however. It should also be noted that the presence of dissolved gasses in water can significantly reduce this value so consider carefully the application or system being modelled before choosing an elastic modulus for water or any other fluid.


Relationship between bulk modulus and poissons ratio?

K=E/(3*(1-2v)) K: Bulk modulus E: young modulus v: poison's ratio on the other hand: delta V/V=(1-2v)*delta L/L relative change in Volume equals to: (1-2v) * relative change in length.


What is bulk modulus and shear modulus for mild steel?

shear = 77GPa


Modulus of rigidity of rubber?

The modulus of elasticity , E, relates tensile stress to tensile strain The modulus of rigidity, G, relates shear stress to shear strain The bulk modulus, K, relates compressive stress to volume strain The three are related using u, poisson ratio of material, that varies generally from 0 to 0.5 E = 9K/ (1 + 3K/G) G = E/2(1+u) G = 3(1-2u)K/2(1+u)


Is there any rigidity modulus for fluids?

for an isotropic media you can divide the force on every element in two components. -bulk component -rigid component now bulk component is associated with bulk modulus and other is associated with modulus of rigidity(written as meu). now bulk component is the one which causes the matter to get compressed and the rigid component only changes the shape of the volume. now, water do not get compressed, it is incompressible and that's why the the force on it is affected by only the rigid component. thats why the modulus of rigidity is zero.