390cm²
To calculate the number of atoms in 0.02 g of gold (Au), you first need to determine the number of moles of gold in 0.02 g using the molar mass of gold (196.97 g/mol). Then, you use Avogadro's number (6.022 x 10^23 mol^-1) to convert moles to atoms. The calculation would be 0.02 g Au / 196.97 g/mol Au × 6.022 x 10^23 atoms/mol.
There are about 2.56 x 10^22 atoms in 10 grams of gold. This calculation is based on the atomic mass of gold (197 g/mol) and Avogadro's number (6.022 x 10^23 atoms/mol).
The answer is 3.32*10^23 atoms
To find the number of gold atoms, you first need to calculate the number of moles of gold using the molar mass of gold (197 g/mol). Then, use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. First, convert the weight of the necklace (12.7g) to moles using the molar mass of gold. This will give you the total number of atoms in the necklace.
Diamond is made of up carbon. So, it has a molar mass of 12 g/mol. 6 g/mol / 12 g = 0.5 mol 0.5 mol * 6x10^23 atoms/mol = 3x10^23 atoms There are 3x10^23 atoms in six grams of diamond.
The gram atomic mass of Au is 196.967. Therefore, 42.0000 g contains 42.0000/196.92 or 0.213234 gram atoms of gold. The number of atoms is 0.213234 X Avogadro's Number or 1.28412 X 1023 atoms.
To determine the number of gold atoms in the sample, you can use the molar mass of gold (197 g/mol) to first find moles, then convert moles to atoms using Avogadro's number (6.022 x 10^23 atoms/mol). First, find moles: 5.00 x 10^-3 g ÷ 197 g/mol = 2.54 x 10^-5 mol. Then, convert moles to atoms: 2.54 x 10^-5 mol x 6.022 x 10^23 atoms/mol = 1.53 x 10^19 atoms.
There are approximately 3.22 x 10^12 gold (Au) atoms in 1.0 x 10^-10 grams of gold. This is calculated by first determining the molar mass of gold and then using Avogadro's number to convert the mass to the number of atoms.
1 mole of gold is 196.97 grams. 7.2 mol Au * (196.97 g Au/1 mol Au) = 1418.18 g There are 1418.18 grams in 7.2 moles of gold.
Atomic mass of Ag: 107.9 grams5.00 grams × (6.02 × 1023 atoms) / (107.9 grams) = 2.79 × 1022 atoms Ag
The formula unit for gold is a single atom, and the atomic weight of gold is about 197. Therefore, the number of atoms in 3.50 g of gold is Avogadro's Number X (3.50/197) or about 1.84 X 1022.
To find the number of atoms in 0.23 g of lead (Pb), you first need to determine the number of moles using the molar mass of lead. Lead has a molar mass of approximately 207.2 g/mol. Then use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.