answersLogoWhite

0


Best Answer

The smoothing capacitor converts the full-wave rippled output of the rectifier (which is left over AC signal) into a smooth DC output voltage

A smoothing capacitor after either a half-wave or full-wave rectifier will be charged up to the peak of the rectified a.c.

Between peaks of the a.c. the stored voltage will drop by a degree dependent on how much current is drawn from it by the load. The larger the value of the capacitor, the less drop there will be, and therefore less ripple when loaded.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

13y ago

Removing rhe load increasing the smoothing capacitance adding a regulator

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How can a capacitor reduce the effects of ripple voltage?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What is ripple voltage in 12 volt power supply?

A: Ripple is a residual voltage evident as voltage following the AC input frequency. The ripple magnitude is a function of not enough of both filtering capacitance or overloading the output. Increasing capacitance will reduce the ripple or reducing the loading


What observation is made when using a bigger value for a capacitor in a full wave bridge rectifier?

bigger capacitor value will make the discharge taking longer time and that is willmake the curve is closer to dc line which means the higher capacitor value will help to have a closer signal to the dc and reduce the ripple voltage


Why capacitor used only in AC power system?

A capacitor is included in the circuit to act as a filter to reduce ripple voltage. ... filter circuitmay be built using two capacitors and an inductor: ...look at http://en.wikipedia.org/wiki/Reservoir_capacitor


How a can capacitor smoothen or reduce the ripple of the voltage produce by the rectifier?

Rectifiers will not give a smooth DC voltage. There are ripples in the voltage given the rectifier. So in order to smoothen the voltage we use capacitor in parallel to the rectifier output. Now lets see how the capacitor smoothen the voltage that is coming from a rectifier...... Capacitor blocks DC and allows AC...... If we take the voltage that is coming from the rectifier it has some ripples in addition to DC, these ripples can be divided in to sinusoidal wave forms ( fictitious )according to the Fourier series. So the rippled DC now divided ( fictitious ) in to a pure DC and sinusoidal AC wave forms having the frequency that is multiples of ripple frequency. Now the DC current will not pass through the capacitor as the capacitor blocks DC. But the AC will pass through it i.e the ripple wave forms that are divided ( fictitious ) in to sinusoidal AC wave forms will pass through the capacitor. So only DC current enters in to the load, which will produce a pure DC voltage drop across the load. In this manner the capacitor smoothens the voltage.


Why do ripples reduce in full wave rectifier as compared to half wave rectifier?

Ripple factor (γ) may be defined as the ratio of the root mean square (rms) value of the ripple voltage to the absolute value of the dc component of the output voltage, usually expressed as a percentage. However, ripple voltage is also commonly expressed as the peak-to-peak value. This is largely because peak-to-peak is both easier to measure on an oscilloscope and is simpler to calculate theoretically. Filter circuits intended for the reduction of ripple are usually called smoothing circuits.The simplest scenario in ac to dc conversion is a rectifier without any smoothing circuitry at all. The ripple voltage is very large in this situation; the peak-to-peak ripple voltage is equal to the peak ac voltage. A more common arrangement is to allow the rectifier to work into a large smoothing capacitor which acts as a reservoir. After a peak in output voltage the capacitor (C) supplies the current to the load (R) and continues to do so until the capacitor voltage has fallen to the value of the now rising next half-cycle of rectified voltage. At that point the rectifiers turn on again and deliver current to the reservoir until peak voltage is again reached. If the time constant, CR, is large in comparison to the period of the ac waveform, then a reasonably accurate approximation can be made by assuming that the capacitor voltage falls linearly. A further useful assumption can be made if the ripple is small compared to the dc voltage. In this case the phase angle through which the rectifiers conduct will be small and it can be assumed that the capacitor is discharging all the way from one peak to the next with little loss of accuracy.[1]

Related questions

How can capacitor smooth or reduce the ripple of the voltage produced by the rectifier?

when rectifier is on, the capacitor is almost transparent (it charges to the voltage provided from the rectifier) when rectifier is off, capacitor holds the peak voltage since it stored a charge during rectifier on time.


How do you reduce a ripple voltage?

You reduce ripple voltage by adding a low-pass filter. In the simplest case, you put a capacitor after the rectifier. The peak voltage will be the rectifier output voltage less the forward bias of the rectifier, while the minimum voltage will depend on current and capacitance. In a more complex case, you could use an LC filter, making the peak voltage smaller. Specifics are dependent on the power and performance requirements.


What effect does the series resistance of a capacitor used in a capacitor filter have on diode current and ripple voltage compared with an ideal capacitor of no resistance?

The effective resistance of the capacitor reduces the ripple current through the capacitor making it less effective in its function of smoothing the voltage. But if the capacitor filter is fed by a transformer and diodes, the resistance of the transformer exceeds that of the capacitor.


What is the use of a capacitor for the correction of ripple factor?

You get ripple in a power supply that is converting AC to DC because in a full-wave bridge the waveform, unfiltered, looks like a sine wave where the negative part of the cycle is flipped to positive. The Capacitor stores charge so its use helps keep the voltage from dropping so quickly to zero. The decay of the charge on the capacitor depends on the resistive load. If you could hold the highest voltage long enough before the next cycle voltage increased you would have no ripple. Various capacitor circuits, with other components, are used to reduce ripple to an acceptable range for an application.


What is ripple voltage in 12 volt power supply?

A: Ripple is a residual voltage evident as voltage following the AC input frequency. The ripple magnitude is a function of not enough of both filtering capacitance or overloading the output. Increasing capacitance will reduce the ripple or reducing the loading


What observation is made when using a bigger value for a capacitor in a full wave bridge rectifier?

bigger capacitor value will make the discharge taking longer time and that is willmake the curve is closer to dc line which means the higher capacitor value will help to have a closer signal to the dc and reduce the ripple voltage


What is the effect of value of filter capacitor on ripple voltage?

Ripples in electricity are usually defined as small, unwanted variations due to direct current. The effect of using a filter capacitor in this environment may vary, but usually has a smoothing effect on the ripple.


What is the effect of load resistance on ripple voltage in presence of filter capacitor?

Ripple voltage, in the presence of a filter capacitor, is inversely proportional to load resistance. If the load were zero (resistance infinite), then there would be no ripple voltage. As the load increases (resistance decreases), the ripple voltage increases. The ripple waveform will appear to be sawtooth, with the rising edge following the input AC from the diode's conductioin cycle, and with the falling edge either being linear or logarithmic, depending on load. If the load is resistive, without a regulator, the falling edge will be logarithmic. If the load is constant current, such as with a regulator, the falling edge will be linear.


What is the function of a capacitors shortly?

*to store charge. *to smooth out(reduce ripple on dc) a voltage


Why capacitor used only in AC power system?

A capacitor is included in the circuit to act as a filter to reduce ripple voltage. ... filter circuitmay be built using two capacitors and an inductor: ...look at http://en.wikipedia.org/wiki/Reservoir_capacitor


How do you measure amplitude of a ripple?

Most true RMS voltmeters can measure the value of a ripple voltage on top of a DC supply, when you place it in AC mode. You can also place a small capacitor in series with a DC voltmeter and that would measure the ripple. The real way to do this, because ripple voltage is not sinusoidal, is to use an oscilloscope, particularly if you want the peak values.


How a can capacitor smoothen or reduce the ripple of the voltage produce by the rectifier?

Rectifiers will not give a smooth DC voltage. There are ripples in the voltage given the rectifier. So in order to smoothen the voltage we use capacitor in parallel to the rectifier output. Now lets see how the capacitor smoothen the voltage that is coming from a rectifier...... Capacitor blocks DC and allows AC...... If we take the voltage that is coming from the rectifier it has some ripples in addition to DC, these ripples can be divided in to sinusoidal wave forms ( fictitious )according to the Fourier series. So the rippled DC now divided ( fictitious ) in to a pure DC and sinusoidal AC wave forms having the frequency that is multiples of ripple frequency. Now the DC current will not pass through the capacitor as the capacitor blocks DC. But the AC will pass through it i.e the ripple wave forms that are divided ( fictitious ) in to sinusoidal AC wave forms will pass through the capacitor. So only DC current enters in to the load, which will produce a pure DC voltage drop across the load. In this manner the capacitor smoothens the voltage.