Amps * volts / 1000
You cannot convert them. KVA is a measure of power, while amperes are a measure of current.
kvar can be calculated as follows the a product KVA andt the sine of the angle between the KVA and KW.
Rating for DG set and any of electrical machines is calculated in KVA. KVA is calculated as KW/pf. One can calculate the required KVA for DG set with this formulation: (KW/pf)/load rate. For example KW=110, pf=0.8 and one loads the DG at 75%, so KVA= (110/0.8)/0.75=185 KVA.
kvar = kva*sin@
kvar = kva*sin@
If you multiply kVA by Power Factor (Ranges from zero to one) you get watts which is effective power.
Power requirements are measured in KVA, which stands for Kilo-Volt-Amperes. To calculate the amount of power you require you would use the following formula. KVA = Volts * Amps / 1000
To calculate the kVA rating of the transformer, you can use the formula: kVA = (Voltage × Current) / 1000. In this case, the secondary winding delivers 10 amps at 480 volts. Therefore, the kVA rating is (480 V × 10 A) / 1000 = 4.8 kVA.
To calculate the kVA for a 3-phase system, you can use the formula: kVA = √3 × Voltage × Current / 1000. For a 3-phase system with a line voltage of 400V and a current of 100A, the calculation would be: kVA = √3 × 400V × 100A / 1000 ≈ 69.28 kVA. Therefore, the system is approximately 69.28 kVA.
To convert 'kwh' to 'kvah' you first need to measure the length of time. You will then convert this amount to hours by dividing by 3,600. You will then divide this amount by the length of time.
To calculate kilovolt-amps (kVA) when kilowatts (kW) is known, you can use the formula: kVA = kW / power factor. The power factor is the ratio of real power (kW) to apparent power (kVA) in an electrical circuit.
Use the link below and scroll down.