DC Current divided by 1.225
CT ratio is the ratio of primary (input) current to secondary (output) current. A CT with a listed ratio of 4000:1 would provide 1A of output current, when the primary current was 4000A.
The turns ratio is the number of primary turns divided by the number of secondary turns. This is the same ratio as input current to output current. ie the turns ratio N = I1/I2
Why input current of USis less than Output current?
A 10 KVA 3-phase UPS will have an input and output current that depends on the specific voltage of the system. You can calculate the current by dividing the apparent power (in this case 10 KVA) by the square root of 3 multiplied by the voltage. For example, for a 208V system, the input and output current would be approximately 28.8 amps.
Power limitation transformer circuit structure of power supply, including: an electromagnetic interference filter unit, a rectifying unit, a power factor correction section, a transformer having a primary input terminal and secondary input terminal, a pulse controlling unit connected with the secondary input terminal of the transformer, a primary power limitation circuit and at least one secondary power limitation circuit, an output current controlling unit and an output voltage controlling unit. The input terminal of the output current controlling unit is connected with the secondary output terminal of the transformer. The primary output terminal and secondary output terminal of the output current controlling unit are respectively serially connected with the primary and secondary power limitation circuits. The input terminal of the output voltage controlling unit is connected with the secondary output terminal of the transformer. The output terminal of the output voltage controlling unit is connected with the secondary power limitation circuit for controlling the magnitude of the voltage and current of the primary and secondary power limitation circuits so as to control the output power.
To calculate the transformer ratio when the output voltage is known, you can use the formula: Transformer Ratio (Turns Ratio) = Output Voltage (Secondary Voltage) / Input Voltage (Primary Voltage). If you're given the output voltage and the input voltage, simply divide the output voltage by the input voltage to obtain the turns ratio. This ratio indicates the relationship between the number of turns in the primary coil to the number of turns in the secondary coil.
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
from the name itself the common collector has its collector terminal in common with both the input and output circuits of a transistor and the base current is chosen as the input current and the output current is the emitter current
Input, output, PROCESS, and Storage
The ratio of output windings to input windings determines the ratio of output voltage to input voltage. The ratio of current is the inverse.
A mealy state machine output depends on both the current state and the input signal received. The combination of the current state and the input signal dictates what the output of the machine will be for a given transition.
Power input to a transformer = (voltage across the primary winding) x (current through the primary)Power output = (voltage across the secondary winding) x (current through the secondary)It doesn't matter whether the transformer is used in step-up, step-down or simple isolation.